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Presentation of the series of results booklets

1. In Freud's field, our results booklets take things seriously, they form a series. The series
of our results in topology extension is aimed at those who want to make their way in this
field, without being petrified with fear or steeped in indifference.

We borrow the expression "results booklets" from the Bourbaki team. The mathematicians
in this group develop the construction of mathematics based on the terms of set theory. In
the instructions for use of their treatise, which they have divided into books, they specify the
function of these booklets:

"Certain books (either published or in preparation) are accompanied by supplementary
booklets containing the results. These booklets contain the essential definitions and results
of the books, but no demonstrations."

Their attempt differs from ours in a way that cannot be confused; our booklets are not
appended to any treatise of comparable scope.

On the other hand, in our construction of the object of psychoanalysis, based on the
foundation of set theory, we have Freud's work and Lacan's writings, the latter
accompanied by his seminar teachings.

2. Psychoanalysis was invented by Freud when he discovered the unconscious. This
invention was completed by Lacan through a critical commentary on Freud's text, which he
tested against his own logic.

This practice is based on a method that produces a discourse.

The method is familiar to those who study texts. It was given its letters of nobility by
Champollion, who had already used it successfully. The psychoanalytic method consists of
comparing two versions of the same text, since analytical discourse is based on the
hypothesis that our psychic apparatus is developed through a series of translations,
transcriptions, and transliterations.

We group these different acts under the term translation, which is the subject of this study.
To use this method, several versions of the text under study must be available.
Psychoanalysis applies only to a speaking subject who himself provides, in a single
discourse, the different versions of the same text (E, pp. 747-748) (-What is foolishly called
applied psychoanalysis is nothing more than the use of the psychoanalytic method in
literary criticism, for example.

The study of the problem posed by translation culminates in a practice of writing that Dr.
Lacan finds in the writing of the Japanese language. The reader may know that Japanese
scholars write their own language (kun-yomi reading) using characters that were used to
write an archaic form of Chinese (on-yomi reading) (*~which they are familiar with.
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Fig. 1
This is how the element that we write as "water" in our countries is said and written. This

practice of writing calls for numerous comments. To begin the discussion, we will limit
ourselves here to a few of them.

The use of this writing produces a permanent translation effect.
This translation takes place within the same culture for the literate Japanese. This is most
evident in written Japanese because of the characters that introduce another dimension to

the translation; this is produced by a fiction of three.

We find this instance of the letter in Lacan's Ecrits when he presents the structure of the
signifier using the oppositional pair men/women,
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which spans two identical doors, signaling in our country those isolated places subject to
the laws of urinary segregation (E, p. 499).

There is something impertinent about illustrating the function of the letter in this way, but it
is nevertheless present in our society, even in our public life, and its articulation seems to
be erased in alphabetic writing.

1t is in the same way that clinical elements can be understood in practice.

The words of the analysand must go so far as to encounter the structure of the Freudian
field in order to reach the dimension of discourse. This structure is topological because
analytical discourse is part of an era of logical-mathematical science whose topology aims
at the foundation. It is therefore through a series of translations that there is a transition
from the particularity of the case to the universality of what is being founded. This gesture
does not claim to take us out of this fantasy but aims to account for it.

This is not an increasingly disembodied abstraction, as Husserl believed in his Foundations
of Arithmetic, with regard to the concept of a cat, but a materiality.



literal, as Frege reminds him, where the foundation of concepts is based on the extension of
specific cases to the dimension of the whole. The concept of a cat is not an abstract cat
from which the fur, whiskers, eyes, etc. have been removed, but rather the collection of
cats, when it gives rise to a whole according to specific conditions. We will therefore speak
of a concept in relation to this collection, provided that a letter or a name can be assigned
to it, and we will then say that it is a set. This assignment depends on textual constraints
that are well known in set theory but less so in other fields (-This raises the delicate
question of proper names.

The practice of psychoanalysis interprets the fact of translation by relying on the drawings
or mathemes of topology and by using the topology used in mathematics, which does not
lend itself to applied topology but, as in the reading of Japanese, achieves a bilingual
speech.
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We could multiply examples for each concept in psychoanalysis. Hence the necessity of our
topological elements, for what can be said of a Japanese scholar who is unfamiliar with on-
yomi reading (ancient Chinese) and claims to be able to write the Japanese language (kun-
yomi reading) unambiguously without it?

Fig. 3

Everyday conversation involves both the gaze and the voice, whereas Freud's practice
consists in principle of isolating the voice at the expense of the gaze in psychoanalytic
treatment itself (a major stage in analytical training, [E p. 698]). This practice responds to
what is discovered there, the torments of transference where, in the interplay of passions,
ignorance hides behind love, sometimes behind hatred. But they must, as we have just said,
be articulated with the whole of the training that makes this transference a formation of the
UNCONSCIOUS.

Lacan's practice is part of this configuration. He undertakes to return to Freud by effecting,
in the case of practice itself as well as in relation to each concept, a slow but radical
reversal. His practice of structure then consists in setting aside the voice, which is what
Lacan did at the end of his career, in order to focus attention on the gaze, especially with
topology drawings. The turning point of this reversal, according to the structure of the
Freudian field, finds its practical realization in short sessions. This stage, where this
practice is reduced to a simple cut, is necessary.

Our approach is not to remain stuck on one or other aspect of the structure, but rather to
ensure that none of them are neglected. Our project is an approach to Lacan, an approach
to Freud, in line with this dual movement that remains unsurpassable—the practice is
thereby broadened.



The practice of psychoanalysis is certainly not aimed at producing mathematics, but it
requires that we do not ignore it. The training ends, for the analysand, with the separation
of the analyst from the analysand, which must be reported. Practice (clinical practice,
structure, and action) does not hold if we avoid the dogmatic foundation of translation, that
is, of reading the unconscious.

Analytical discourse progresses from this practice, but it is already there for our
generations. This was not the case for Freud, nor yet for Lacan; they did not have it at their
disposal. Analytical discourse is the social bond that is formed as a result of this practice
and its results. Here we see that it does not happen on its own. It begins with two, paired
with the works of Freud and the writings of Lacan.

These reasons lead us to consider, in the preamble, topology as it will be discussed as the
argument of the discourse. This discourse, which is currently being developed, appears in
several versions in Freud's work and in several translations in Lacan's teaching. We must
reason them through the use of the psychoanalytic method, the learning of which
constitutes the other stage of training. This method cannot be neglected in the reports of the
test, just as it cannot be neglected in the internal effects it produces.

3. Freud's work is divided into two topics, separated by an intermediate moment (1914-
1915) when the necessity of the transition from the first to the second is affirmed.

There are three topological chapters in Lacan's teaching, related to three types of
mathematical varieties: graphs (1953-1961), surfaces (1961-1971), and knots (1972-1981).
We define and develop these concepts in our series of results.

Freud
1t topic. In letter 52 to Fliess, Freud draws a diagram % that corresponds to his hypothesis

that the psychic apparatus is constituted by successive translations. The segments
correspond to upheavals caused by translation.

P Ps Ics Pcs Cs
M MeeeaX KemeaX X
x X X XeweeX XeommeX X
X x

Les lettres du graphe de la lettre 52 se lisent ainsi :
P = Perception, Ps = Perception-signe, Ics = Inconscient,
Pcs = Préconscient, Cs = Conscience.

Fig. 4



Freud raises the question of the conjunction of the extremities of this graph, of the knotting
together of perception and consciousness, where our "reflexive tradition" "has tested its
standards of truth" [E, p. 69]. This question recurs in The Meaning of Dreams (p. 460, note
1) when he gives a new optical version of his diagram, in which each stage of translation is
rendered by a lens that produces a reversal of the object, as in a telescope.

S, Ics Pcs

>

Shéma de la Traumdeutung Fig. 5

This is the initial problem from which we will start the topology of the subject.

During this first period, Freud established the work of the unconscious in three major
works: The Interpretation of Dreams, The Psychopathology of Everyday Life, and Jokes
and Their Relation to the Unconscious.

2nd topic. In his second topic, Freud questions the same structure that recurs in the pitfalls
to be avoided in dualism in theory. To this end, in 1914, he introduced his theory of the ego
with narcissism. The other who speaks through the stumbling blocks of my speech is not
symmetrical to me, just as my unity does not depend on the unity of my organism. What
makes one out of these two? Similarly, Freud distinguishes between the sexual drives that
invest the object and the ego drives that are supposed to preserve it. He recognizes that
they are the same thing (Introduction to Psychoanalysis):

"It seems that in a whole series of cases this could also be a conflict between
different strictly sexual tendencies.” (p. 330, retranslated.)

and

"We have no reason to assert a difference in nature, which is not very
graspable, between the two groups of drives."” (pp. 389-390, retranslated)

But they are not the same:

"But it is basically the same thing, because of the two conflicting sexual
tendencies, one is always, so to speak, satisfying to the



myself (ichgerecht) while the other challenges (herausfordert) the defense of
the self. This remains close to the conflict between myself and sexuality." (p.
330, retranslated)

"The two (groups of drives) are opposed to each other for us only as
designations for the sources of energy of the individual, and the discussion,
whether they are fundamentally one or different in nature, and even if (they
are) of a (single group), when did they separate from each other?"” (p. 390,
retranslated)

It is for this same reason that Freud introduced narcissism as early as 1914, since, in
narcissistic neuroses, the ego is sexually invested as an object, and Freud believes he can
elucidate this enigma by studying these neuroses.

"We certainly know much less about the development of the ego than we do
about that of the libido, because only the study of narcissistic neuroses
promises an examination of the structure of the ego." (pp. 330-331,
retranslated.)

This structural difficulty, which recurs from the presentation of the unconscious to the
introduction of the death instinct into the doctrine, is also present in the 1914 article, in
which Freud distinguishes, in the most certain manner, between the two terms "ideal ego"”
and "ego ideal," the fact that "we are nevertheless unable to distinguish their use in this
text should be rather worrying" [E, p. 672]. Some believe this expression to be a reproach
to poor readers of Freud who fail to distinguish between these two uses. This is not the
case. If there is a reproach to be heard in this sentence, it is addressed only to those who
are not concerned about it, as we assume they have read Freud's article carefully. In fact, if
they have not read it, they cannot distinguish between these two uses in the text; if they
have read it, have they realized that it is impossible to distinguish between them? Very few
have read it and, consequently, very few are concerned about it.

In this intermediate period, in 1915, Freud attempted to write his Metapsychology in
twelve articles, of which only four remain, plus one that has just been rediscovered (1985).
It was this failure that prompted him to construct his second topic, in which he radicalized
his position by going so far as to address the outcome of his initial hypothesis, since it
necessarily led him to subvert our conceptions of causality, under the title of the
automatism of repetition.

Freud seeks a rational explanation for this enigmatic fact in phylogenesis (Introduction to
Psychoanalysis, p. 334). To this end, he has already constructed the myth of the primitive
horde (Totem and Taboo), in anthropology. In biology (Introduction to Psychoanalysis, p.
390), he seeks support to the point of evoking Weissmann (Beyond the Pleasure Principle).
As this structure appears in the material of analysis, he seeks the reason for it in philology
in Abel (The Opposite Meanings of Primitive Words). The answer is logical; it is
topological.



Lacan

Let us distinguish between historicity and structure. The temporal development of
phenomena holds some surprises for us, such as feedback, reversals, interruptions, and
resumptions that only structure can illuminate.

We must indicate by what rational process, in what reasonable context, Lacan was led to
introduce his mirror stage [54] 2. It is by realizing the fundamental dependence on the
context, let us say the social or even familial context of the subject, that we must bear the
repercussions of the radical inadequacy of the most precise account of this context. Better
still, we arrive at an uncertain concept, or one that is simply paradoxical in appearance, of
an acquired innateness. Here we see that our categories at the time are lacking something,
that we lack the categories necessary in this situation. These are what we call structure,
and we undertake to study them in this series of booklets.

Structure implies features or invariants, according to certain principles governing the
actions to be performed.

What is invariant is what occurs on the occasion of each utterance. We will note this in the
terms of the signifying condensation used above, as the product of this signifying involution
is noted by Lacan with the letter a:
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This structure establishes, between structure and history, the reason discovered by Freud,
which is not mentioned in the Rome speech and which Lacan begins to address in "The
Instance of the Letter" and takes up again in "Position of the Unconscious" [E, pp. 835-
836].

We will thus schematize the psychic event in Freud's sense, that is, the rupture of
semblance which, according to Lacan, causes a trickle of small letters to erode the
signified, which can only be resolved by counting the elements, provided that no letter is
missed, in a rapture of having found the name. We present this in all of our work using the
following T-shaped graph.
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Fig.7
We find this presentation at every stage of Lacan's teaching.

Chapter 1. The first historical reference to topology in Lacan's teaching can be found in his
first speech in Rome in 1953, concerning the structure of language. On this occasion, he
uses the torus as an object to illustrate this structure [E, pp. 320-321].

Dr. Lacan devoted the first period of his teaching (1953-1961) to a symbolization of the
Imaginary through the alternation of the similar and the dissimilar [E, p. 821], in order to

lift the Symbolic out of an imaginary quagmire into which psychoanalysis had fallen after
Freud.

We must refer this Imaginary back to the instance of the Symbolic, that is, to the structure
of language. From this period onwards, Lacan proposed a graphic solution to the
conjunction of the extremities of Freud's graph.

P Ps Ics Pcs Cs
X x X X

Fig. 8

Let us take the graph of lines drawn by Freud in his letter 52. We replace the points with
segments and the segments with points. The same terms are found there. By folding this
graph of lines,



Fig.9

we obtain the schema, referred to by us as schema F, which allows us to navigate the two
Lacanian schemas contemporary with this early period of his teaching.

11-"“"”3 H#x ﬂ“lr:.

Schéma R Schéma L

[E, p. 553] [E, p. 53]
Fig. 10

We study the conjunction of these two diagrams on the surface of the projective plane in
booklet no. 2. Thus, from the very beginning of his teaching, Dr. Lacan poses the enigma
that we must relate to the structure of language, by asking whether these elements are one
or two, thereby prolonging the subversion of our reflexive tradition.

Let us return to Freud's graph, transformed into his line graph. Thanks to our diagram F,
we can transfer the letters from Lacan's diagram R (it should be noted that there are no
points marked at the ends of the line graph, however, the letters m and M correspond to

these places) and the orientations of the edges from diagram L.

Premuer Primaire Secondaire
P Ps Ics Pcs Cs
> XXX —>— X —>
M | A S ! m

Fig. 11

The primary process, dominated by the pleasure principle, is a thought process that reigns
in the unconscious [E, p. 650]. It would be a mistake to believe that what is primary is first.
For us, therefore, there is a primary process that dominates the separate perceptions of



the unconscious through perception-signs. The secondary process, governed by the reality
principle, dominates the conscious separate from the unconscious through the
preconscious.

We report these results in the structure diagram.

Involution
i
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Schéma F Schéma F fermé Schéma F
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Pmoessus premier Prmssus primaire Processus seccndalre
(Principe de plaisir) (Principe de réalité)

Légende des dessins : P = Perception Ps = Perception-signe
= Inconscient Pcs = Préconscient Cs = Conscient

L’involution signifiante

héma de Freud
du schéma Fig. 12

We also transfer the letters from Freud's diagram to our diagram F, along with those from
diagram R and the orientations from diagram L.



Fig. 13

In our diagram F, the orientation of the edges by arrows comes from diagram L and the
grid of areas comes from diagram R. We replace the letters I, R, S with three different
colors

— S on the side of the primary process, R on the side of the imaginary grid of reality, and |

on the side of the secondary process, which divide the primary process Ics into three parts
in our diagram.

This observation allows us to read Lacan's diagrams R and L placed in our graphic
presentation of the structure.
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entre les schémas de Lacan et le schéma de Freud
Fig. 14

Dr. Lacan extends this questioning in order to present to his audience the articulation of
his schemas by constructing the graph of desire, which is the most developed version of our
T-shaped graph of the structure that accounts for the links between structure and history,
but where we see the problem of the disjunction and intersection of two logical sets in
Euler-Venn diagrams placed on the sphere. He will develop this logical presentation in the
next stage of his teaching.
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From the mirror stage onwards, Dr. Lacan deals with the ideals of the person, relating
them to the structural schema that we read in the optical schema [E, pp. 673, 674, and

680]. This is what we do with topology, starting from the Imaginary in mathematics. But
where the Imaginary retains a function.

Chapter 2. During the second period of his teaching (1961-1971), Dr. Lacan practiced an
imaginarization of the Symbolic by resorting to the theory of topological surfaces.

It was during this period that he established a correspondence between the four objects of
the drive and the four elementary topological surfaces.
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Eléments remarquables de la topologie des surfaces Fig
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Freud's moment—which we must indicate each time as a double question—is formulated as
follows: "Is it one? Is it two?" This moment returns to this stage in the form of the
articulation of non-orientable surfaces to orientable surfaces in Lacan's construction,
which he calls signifying involution, through which he summarizes Freudian repetition
[Logique du fantasme. /967 L'Etourdit, pp. 26-27, 1971] (7- -

We can place these elements of surface theory on our simplified presentation of the graph.
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entre les surfaces non-orientables et les surfaces orientables
Fig. 17

Our work coordinates this structure with the logical version, replacing the Euler-Venn
diagrams with the flattening of the nodes that come to us from the third stage of Lacan's
teaching.

In fact, in the second period, he reconsiders step by step the entire construction of
mathematical logic, respecting the three stages of propositional calculus, predicate logic
with the Kanteurs, and set theory 8 .

Chapter 3. In the third topological chapter (1972-1981) of his elaboration of analytical
discourse, Dr. Lacan reformulates all of these questions in the field of existence of the knot.
1t is true that the previous formulations succeed in showing the framework of the structure
while failing to write it down.

To avoid the pitfall of representation, previously avoided thanks to the projective plane, it
cannot be constructed in three dimensions; the question of another writing is formulated in
terms of knots.



1t is, of course, a question of situating the Real, in addition to the previous instances of the
Imaginary and the Symbolic, and no longer the psychic reality that is said to be implicit in
the three-way knot (Seminar RSI, 1974-1975).

But topology is not a phantasmagoria of the Real, as some would have us believe in order
to suggest that it is impossible, when in fact it is simply difficult for them. Topology does
not claim, as we have already said, to take us out of fantasy but to account for it, in the
manner of writing, with knots.

Admittedly, this topology starts from the Imaginary, as its detractors accuse it of doing, this
time to disqualify it, Kant to this so-called Symbolic, whereas it produces an upheaval of
the whole because of the Symbolic.

For our part, in order to read this state of completion, we consider in advance the edge
nodes of the perforated surfaces, defined by the immersions of the surfaces, they have only

an extrinsic existence.

Trou § Trou RSI
L'enlacement. Le neeud borroméen.
Le neeud de tréfle. p
Trou R J
La droite infinie, Le faux trou.

le trou est autour.

Trou SR

Le rond avec son trou.

Eléments remarquables de Ia topologie du nceud 9 Fig. 18

1t is remarkable that the knot disappears in the intrinsic but that this presentation retains
the trace of the knot (knot type). The theory of surfaces, argument of the chapter



Lacan's previous teaching is, for us, a means of investigating the space around the knot.

In our first booklets, we provide the necessary information for those who wish to verify by
calculation what we do by drawing in the study of knots (starting with booklet no. 3).

Let us place these elements in our graph:

" enlacements et nceud

€ "E
@ )
E =
@ @
T 7r]
> ®
N >
3 @
=

<
I
&

L’involution signifiante

entre les non-nceuds (2 ou 4) et le nceud i
Fig. 19

For Dr. Lacan, it is a matter of starting from an impossibility encountered in the previous
stages, such as a hole, which for him is the Real, in order to account for the imaginary
function of the phallus that veils this hole. But in order not to fall back into this damned
phallus in a philosophical manner, he must not succeed too easily. In his commentary on
the structure, these categories always recur, as we have said, the Real: its impossibility
becomes existence; and the Symbolic: hole (insistence), in an increasingly precise
tightening, based on the imaginary consistency, of the failure to account for the sexual
relationship.



He must gather his thoughts from another writing, in which this failure consists. That is to
say, how this structure cannot be written [Introduction to the publication of the RSI
seminar, p. 88, and Reading of December 17]. A structure whose failure to be written
accounts for its very impossibility. All the concepts of psychoanalysis are modified as a
result, since each ome, like any element of clinical material, bears the trace of this
evanescent structure.

To conclude, we have already achieved this other writing for the calculation of logical
propositions. The rest of the construction is accomplished from there.

4. From Freud to Lacan, a certain journey comes to an end. The term "completion" does
not mean the cessation of practice, but its formalization from this turning point where the
situation of psychoanalysis has become irreversible.

1t is now retroactively inscribed in this double turn produced by Freud's work and Lacan's
commentary.

It remains to establish a series of readings that will allow us to move "towards Freud" in
this return initiated by Lacan.

Cautious observers and those who have preferred to remain on the sidelines can rest
assured that there is no risk of another phenomenon like Freud or Lacan. It is no longer
necessary in this field. Besides, who would want to take on this now obsolete role, unless
they were willing to slide down the slippery slope of mimicry, with no results to show for it?
Today, the difficulties are of a different order.

5. The stitching of the subject's place is now complete. It closes the gap that Freud and then
Lacan kept open, and there is no reason to keep it open any longer. The double loop
described by Freud and Lacan is over, and with the advent of Canrobert (Introduction to
Scilicet..., p. 11), it can no longer be considered a label of use. Our results contribute to a
new style of reading, whose mathematical significance goes beyond the interests of a single
corporation. Our seriality is not one of filiation but of transmission and invention.

A discrepancy between the rank of a term and its index always constitutes the major
difficulty in the study of a mathematical series. The terms of a series are indexed by the set

of numbers known as natural numbers. This set begins with the number 0.

Number 1 is not first, there is always an element before one. So we will give a booklet
number 0 on logic, in order to situate ourselves in the sequence of this series.

There are six booklets in total:
No. 0: NONS (the topology of the subject)

No. 1: SWARM (the fundamental group of the knot)



No. 2: FABRIC (intrinsic topological surfaces)
No. 3: KNOT (a theory of the knot for psychoanalysis) No.
4: STEPS (chains of four or more circles)
No. 5: IF NARROW, LIKE THIRTEEN AND THREE... not wide
(the generalized Borromean knot).
Our booklets themselves respond to this structure of having been provoked by a rupture of

pretense; they are based on a trickle of small letters in the first issues, a reading, a
counting that follows the nodal structure and produces a delight oriented by names.
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0
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entre les fascicules de résultats '8



6. A major difficulty for our era can be summarized as follows: it is false that anyone, even
in the Freudian field, does not want topology, and it is false that the same people accept it.
This situation is described by Lacan when he compares psychoanalysis to architecture [E,
p. 698]. He notes a discrepancy between a logical power that resembles discourse and the
utilitarian ends that all power claims. Although useless, it is nonetheless central to our
presentation of practice, as explained above. Utility is not a relevant concept, it is even
dangerous in this field, where lost time produces its discovery.

When we subvert conventional logic, those deprived of this imagination risk believing that
they are dealing only with irrationality. It is as if we were removing the cork belt from a
learner swimmer.

Some would like to substitute the natural for the artificial, without taking into account that
there is nothing natural for a being who is subject to a double narcissism.

Thus, the early psychoanalysts were divided on these questions, and their contemporary
scholars, most of whom were ignorant of the articulated logic of signifiers, of the very
possibility of articulation, and even more so of the impossibilities that follow from it, fell
into these traps at every turn. This was true of post-Freudian psychoanalysts, as well as
neo-Lacanians.

For them, abandoning the categories derived from logic would be tantamount to losing
their footing. A first step toward the truth consists in modifying them, and studying the
effects of this modification itself provides the help we seek. Lacan understood this necessity
by taking up, on behalf of psychoanalysis, research initiated by others (linguists, logicians,
mathematicians, ethnologists). He endowed psychoanalysis with a topology of the subject
that frees it from classical categories and cannot be considered an auxiliary discipline.

Those of his students who adopted the "weak" thesis of the auxiliary nature of topology did
not use it for long and all admitted that they could not find any use for it in their practice or
in their reports. Today, few of us use and practice topology, which we hold dear because of
a stronger thesis:

1t is wrong to say that "topology is psychoanalysis" and it is wrong to say that "topology is
not psychoanalysis."

Since 1983, we have had a mathematical logic construct that modifies classical logic using
a topological operator known as the interior operator. This is the topology of the subject.
Our work consists of following the consequences of this structure when we encounter it in
discourse, which is bound to happen in any context. It is this structure that we find in the
approach to topological surfaces and which alone necessarily organizes the topology of the
node. Indeed, there are entanglements, which are there and which are not there. It starts at

four.



1t is in order to achieve this degree of simple structure that we make available to readers
the details at our disposal, when they are necessary.

Dr. Lacan indicated the necessary references without developing them in full, leaving it to
his audience to refer to them and clarify them. It is not that he did not do so himself, as
many can attest. He was content to use them in multiple and relevant ways, with enough
care that by following his instructions, one could find what is only announced and used in
the translation. Much work of explication in the areas addressed is yet to come, and there
are already some drafts. Our series aims to be more than a draft.

7. It is a question of using these clarifications in practice for the work of constructing the
psychoanalyst, that of the object a. This task is ongoing; it is none other than that of
Canrobert. A psychoanalytic clinic will emerge from it, produced by the interested parties
themselves.

We will also provide guidance for those who are looking for reasons to study this topology
but have not yet committed to doing so. We will limit ourselves to the ideas that should be
most easily understood, saving the new discoveries for our reading. This reading cannot be
understood without the practice of topological mathematics, to which we constantly refer.

Others may extract other results from this topology. Moreover, we have the testimony of
those who devote themselves to it for a time, that their work cannot fail to return to it.

We construct this topology of the subject in a way that draws on the subject, insofar as
"consciousness without science is nothing more than complicity in ignorance."

The value of our series of textbooks also lies in their connection with everyday
mathematics, a constraint that we have imposed on ourselves. We provide the classic
algebraic components, i.e., the elementary ones (Bourbaki), of the topology of the subject
and those that are in progress, i.e., as it is currently being developed in our field (P.
Soury), which are necessary for reading Freud and Lacan.

We take the development of the topology of the subject to the point where it is ready to turn
into a mathematical theory, unfortunately for those who disapprove, we do not produce
exclusively mathematical work. It will be up to mathematicians to reformulate it in their
discourse in order to discuss it and discover its consequences in their discipline.

8. We define topology in extension as Lietzmann speaks of Explanatory Topology [W.
Lietzmann, Anschauliche, visual, verlag R. Oldenbourg, Munich 1955], but we give greater
weight to logic since it is an eminent part of our topology of the subject, and special
attention to the drawings we establish as mathematical formulas.

We commonly encounter three different attitudes toward topology.



Firstly, not everyone may know what it is. Ignorance remains the norm, and this state of
affairs is the responsibility of specialists. To see this, one need only note that, in France,
through the academies, teachers use the term topology to refer to some of the activities they
offer their students starting in the second year of preschool. There is therefore nothing
particularly inaccessible about the approach to topology.

Then there are two related situations, one of which we will describe as studious timidity,
which is necessary but insufficient on its own, and the other as the effective practice of
topology, which at some point requires the former. The fact that these two attitudes occur
separately is due to a particular feature of mathematical style and to the structure of
discourse, which is divided into general topology and topology (algebraic, differential,
semi-linear, combinatorial, geometric, etc.). There is the same articulation between these
two domains, general topology and topology proper, as there is between mathematical
logic and mathematics. Let us describe it.

The consideration of topological structures, in any field, is done through an investigation
that consists of constructing invariant features during continuous transformations.

Thus, in the practice of topology, we encounter the need to define continuity. This definition

is the subject of general topology, known as set-theoretic topology 1°.

Of course, topology assumes and presupposes the correct definitions of general topology,
but in practice, the development continues, making room for these definitions without
returning to them in each case. There is a principle of abbreviation that we can locate in

the use of language, the language of categories L.

Conversely, the fact that some beginners get bogged down in general topology detracts
from the effective practice of structure in favor of work of a different order. If they do not
overcome the barrier that separates these two aspects of topology, they are reduced to
endlessly refining definitions without ever finding convincing results, as formalism becomes
increasingly cumbersome in this dead-end path. They then find themselves studying families
of open sets, closed sets, neighborhoods, and filters, the interest of which few see as
anything other than anecdotal, given how rich in nuances this field is. Our apprentice
topologists fall into a relativism that is ill-suited to psychoanalysis.

Furthermore, it should be noted that there are mathematicians, and not the least among
them, who dispute the impracticality of these general definitions for those who question the
structure of a particular field, given that general topology has historically remained
focused on classical functional analysis (i.e., the analysis of real functions with real
variables). There is idealism and transcendence in this classic and limiting questioning
among mathematicians themselves, when they become fascinated by the structure of real

numbers without a real strategy, having failed to integrate the results of mathematical logic
due to K. Gédel and P.J. Cohen.



It should be noted that in this brief overview of attitudes towards topology, we are
obviously not even referring to the fanciful, supposedly topological activity of some. We
understand that, among our contemporaries, the proponents of this fantastic topology are
called "Lacanians.” We do not wish to abandon Lacan's teaching to such a sad fate before
claiming to be his students. We have the deepest respect for everyone's intuitions, the main
thing depends on the presentation of the work.

To resolve the difficulty encountered in learning topology, without evading its profile, we
would like to draw the reader’s attention to a particular feature of style in mathematics.

We call this condensation, which has nothing to do with transcendence, the principle of
abbreviation. This principle dictates that a work entitled topology, to take the example that
concerns us, suggests and assumes, from its title or in the title of the series in which it is
published, that the functions (morphisms of the category, transformations) it deals with are
continuous and that the objects it studies are related to well-known topological spaces,
without it being necessary to redefine them each time.

This is similar to how in mathematics we do not redefine material implication in every
work. Nevertheless, some of our idealistic mathematicians complain that their colleagues
pursue their work with little knowledge of logic and set theory, when naive theory seems to

suffice.

1t is as if they were demanding that every driver have a knowledge of mechanics in order to
be allowed to drive a car. In doing so, they are simply denying the characteristic feature of
the industrial method, the feature that has made it so successful and led to its development.
Indeed, in the industrial empire, as in language, the user can make proper and relevant use
of the object without knowing how it works. That is to say, without having participated, or
even being able to participate, in the design and manufacture of the object. This naturally
raises the question of maintenance, which was much better resolved in the era of Neolithic
techniques.

Admittedly, in psychoanalysis, things work differently since, from the outset and
throughout, the psychoanalyst, the person who consults the psychoanalyst, is held
responsible for the unpredictable consequences of what they say, and it is so that they can
reasonably assume this responsibility that topology is necessary in their teaching. But this
fact must not, under the pretext of mathematics, go so far as to foreclose (freeze,
holophrase) the style of mathematicians, as is done by some simplistic minds. This means
that even in mathematics, some condensation is used.

Of course, in topology, general or renewed set-theoretic topology is assumed, but the
strategy is different in the mathematical method, because it relates to the structure of
language, that is, to a practice of the absence of metalanguage. It is this structure that is
sealed in the industrial method.



We neither mock nor disregard these premises, and we encourage those who still parrot
them. For we wish to point out to them that they are quite right not to understand the
practical use of our topology, nor Lacan's practice when he resorts to topology, since they
themselves approach it in an inappropriate manner. We wish to show them why.

That is why we propose to take things from both ends at the same time, each in its proper
place.

In essays that immediately put topology into practice through varieties.

In a return to set-theoretic topology, not in general but in the specific and main question of
the structures of propositional, predicative, and set-theoretic logic. This is in order to deal
with each of these three chapters of mathematical logic in a topology in the general sense
of the term. We thus obtain the premises of the topology of the subject by modifying
negation in the manner of modal logic into a topology.

Our reference work in mathematics is that of E.E. Moise [28] for the practice of topology.
Some may find that there are too many results in this collection. This is because there is a
resistance that detracts from any certainty. The results are distorted simply because they
are recorded by the interested parties themselves. There are two ways to break down this
obstruction.

One consists of establishing a protocol for experimentation and recording that leaves room
for operation. The latter is increasingly supported by those who have already produced
results.

The other can be summed up as communicating results for discussion by anyone, even
those outside the field concerned.

These two solutions are only opposed by the ignorance of those who support the resistance

that sustains the malaise in civilization, wonders and surprises that are constantly renewed
in each case of transfer. For the rest, they can be undertaken jointly.

Plaisance, July 1996.



Chapter One
Scientific literature on knot problems

In the following pages, I propose to show that there is a topological
technique that allows knots to be read: if this technique is applied, every
knot appears as a topological process that has a regularity and can be
perfectly inserted into the sequence of logical activities related to ordinary
language. I also want to try to explain the processes that give the knot its
strange, unrecognizable appearance, and draw a conclusion about the nature
of the topological tensions whose fusion or collision produces the knot. I will
limit my presentation to this point: it will have reached the point where the
problem of the knot leads to broader problems, the solution of which
requires the use of other materials.

1. Initial approaches

I will begin with a historical overview, as I will have little opportunity to
return to it in the main body of the work. I will take this opportunity to
comment on the different styles of investigation and indicate the different
levels of difficulty in approaching the knot.

al - J. B. Listing

The scientific conception of the node did not develop significantly until very
recently, as the first published study on this subject dates back to 1847. This
was J.B. Listing's habilitation thesis [25], which he defended in Géttingen.

It is worth noting that he was also the first person in scientific discourse to
use the term topology. The first occurrence of this term is found in his thesis,
which covers a series of structural problems relating to the orientation of the
subject in space.

Moving from the mirror symmetry of a game die to the distinction between
left and right spirals found in botany, he arrives at the presentation of
flattened knots, which he introduces through cylindrical spirals, today's toric
knots. We note that he already distinguishes between two types of areas
determined by the flattening of a knot. He notes them with two different
letters, I and d, and already seeks to form polynomials with these variables.

a2 - The precursors

We can single out Descartes, who mentions the art of lace-makers as worthy
of interest in his Rules for the Direction of the Mind [9]. Then also,



Taking it one step further, Gauss drew "a collection of knots" in 1794. He
also left two studies among his manuscripts, in addition to his 1833 text in
his notebooks devoted to electrodynamic circuits [13]. He planned to write a
book on the subject, as evidenced by a letter from Mobius to Gauss in 1847

[34].

In fact, it was not until 1877 with P.G. Tait [37] and 1885 with C.N. Little
[26. a, b and c] that a truly developed presentation of knots began.

As chemists, they were both involved in this investigation by Lord Kelvin
and produced the first tables of knots. We should also mention the
contribution of

T.P. Kirkman [20], who accompanied their development with his comments.

Since Tait's work, the notion of crossing sign has been defined in a
presentation of a knot or oriented chain.

For translations and planar rotations, there is only one type of crossing in a
non-oriented knot or chain presentation:

/
/

Fig. 1

When the presentation is oriented, there are two different types of crossings:

XX

Fig.2
They are indexed by two crossing signs, denoted respectively by +1 and —1.
We leave it to the reader to verify for planar transformations the identity of

any non-oriented crossing and the non-identity of these two types of oriented
crossings.



Note that we are dealing here with presentations of knots and chains laid flat
on a table, for example. These projections must meet the simple condition of
not presenting multiple points other than those where at most two string
elements intersect, and never more. The flattened presentations determine
string arcs, crossings where the passages above and below are noted, and
areas delimited by the portions of arcs and crossings(1-:

croisement

\ zZone
&

arc de corde

Fig.3
a3 - Two other tables of knots

For those seeking a material basis for their work, apart from the string
constructions they may have made, we indicate here where a multiplicity of
knots and chains can be found that offer themselves as a place of
exploration. We will subsequently propose a renewed formulation of this
field. Knots and chains are presented in mathematical literature in the form
of a table enumeration.

Since the knot tables of P.G. Tait and C.N. Little, other tables have been
established and successively expanded.

We are familiar with K. Reidemeister's table in his Knétentheorie published
in 1932 [32] and the more recent one by D. Rolfsen in 1976 [33], which
offers a drawn and expanded version of J.H. Conway's 1970 compilation [§],
which we will discuss again in the history of knot polynomials.

There are other such tables in the available literature, for example in L.H.
Kauffman [18. b].

2. Tightening the knot at the turn of the century
al - Entanglements and knots
If we continue in chronological order, we must return after the English

chemists to H. Brunn in 1892 [7. b] for the end of the 19th century. We note
that in his study of the chain, he marvels at the presence



Borromean rings, which hold together and do not present any intertwining or
consistent sub-chains. This study is an excellent reference for beginners who
want to follow Lacan's attempt to isolate the knot through chains and knots.

This study is still conducted in the formal style of previous essays, before
Poincaré came along and transformed the old Analysis-situs, named thus by
Leibniz [31], into algebraic topology. Attention is then focused on the space
around the knot, using more sophisticated algebraic techniques with the use
of homotopy groups.

However, we will continue to pay close attention to the early period of
topology in our work, as it is better to avoid uncontrolled use of group
structure, the importance of which has been well known since F. Klein, and
knowing that even these works, however archaic they may be, can be part of
an algebraic structure formulated in the language of categories?.

Let us now turn to works that are closer in style to today's mathematical
publications.

22 - First theorems

M. Dehn in 1910 [10] and J.W. Alexander in 1927 [3. a] provided the first
truly mathematical results at the beginning of the century, presenting them as
theorems that required genuine proofs.

We owe Mr. Dehn the lemma that bears his name and which gave
mathematicians a curious surprise. We will recount this anecdote shortly.
But let us note that among other results, he formulated the method that we
found by another route during our conversations with P. Soury, in the
calculation of the fundamental group of the knot(2:-We will return to this at
the end of this chapter.

We owe to J.W. Alexander [3. a] the construction of the first knot
polynomial, whose search as a knot invariant is very characteristic of this
moment in topology thanks to Poincaré.

We will comment further on this use of algebraic group structure and the use
of polynomials in their current developments.

a3 - The adventure of Dehn's lemma

Dehn's lemma is characteristic of the difficulty of our discipline, since in
1910 he believed he had proven the lemma that formulates the criterion for a
knot to be trivial. However, in 1929, H. Kneser [21] showed that Dehn's
proof was insufficient, and it was not until 1955 that



C.D. Papakyriakopoulos [30] finally provided an acceptable proof.

This would be nothing more than an anecdote were it not for the reputation
of topology, and more specifically knot theory, as a risky discipline, a
reputation that fortunately seems to be fading today.

3. A knot theory

We can now define what knot theory is, in the most current sense of the
term. To do so, we will follow L.H. Kauffman [18. b], who himself adopts
the spirit of the rapid overview of knot theory provided by R.H. Fox [12].

A knot theory is a problem of situation or placement. Given a space and an
object (round), the problem is to know how this object can be arranged in
this space, i.e., how can it be placed there or how can it be located there?

O+

In knot theory, the object is a simple circle placed in three-dimensional
Euclidean space. The way in which the object is located in space usually
corresponds to the notion of embedding, and we will give a definition of this
notion later on, which the reader can intuitively grasp for now.

Fig. 4

Classical knot theory attempts to classify these different circle embeddings.
We therefore need a criterion of identity and difference in order to be able to
say what is the same and what is not the same. This concept corresponds to
an equivalence relation.

There are different approaches to such a theory.

We will adopt a formal knot theory in the sense of L.H. Kauffman [18. a],
which involves implementing a combinatorial calculation of features



(invariants) characterizing the presentations of knots thus identified by a
relationship of equivalence.

For us, this will be an equivalence by elementary movements that change the
appearance of the same knot or chain when read. These elementary
movements have been known since K. Reidemeister [32]. A composition of
these movements constitutes a change of presentation, which leaves the knot
or chain identical.

The theory begins when we have the correct definition of the movements.

Another approach consists of studying the space around the knot (the knot
variety) using algebraic topology techniques, or even differential geometry.

Before undertaking our study in the formal style we have adopted, let us
explain how tempting this other approach can be, by commenting on the
three steps required by the definition of knot theory we have just given.

4. Commentary and definition of the elements necessary for a knot
theory

al - Situation or placement
Let's take an example from our previous work on topological surfaces.

The projective plane? is a two-dimensional object; it cannot be placed as
such in three-dimensional space®. There is an obstruction here, and this
question is a good introduction to the problem of knots. It sheds light on the
transition from the intrinsic classification of two-dimensional manifolds,
surfaces, to the classification of knots, one-dimensional manifolds located in
three dimensions.

Indeed, the reader may wonder why topology does not continue the
classification of intrinsic three-dimensional, four-dimensional, and so on,
manifolds.

It begins to dawn on the reader that there are several competing ways of
placing an object in space, and this problem will increasingly take center
stage instead of simply enumerating the different intrinsic objects of
successive dimensions. The main purpose of this chapter will now be to
explain this fact.



However, a more intuitive learning of the practice that does not use
mathematics in the field of existence of the node can dispense with the
definitions we are now giving. Readers who prefer this intuitive practice will
return to our text (see § 7. Movements below) when we define the
equivalence relation. We will define this equivalence in the space of circles
using Reidemeister movements(&-

a2 - Embedding and immersion

In this section, we provide more mathematical expressions that formulate
this situation, for readers who are not satisfied with an intuitive approach.

We must therefore specify the order of difficulty of the methods used in
topology. Topology studies are usually divided into three different
categories:

— topological spaces (TOP),

— piecewise semi-linear spaces (PL),

— differential geometry (DIFF),

which are ordered here according to the greater or lesser fineness of the
techniques used to divide up space.

The definitions we now give belong to differential geometry (DIFF), the
most refined category. However, the study of knots more readily requires the
category (PL) of piecewise semi-linear spaces.

An embedding of an object O (differential manifold) of dimension m in a

space E (differential manifold) of dimension n, with n greater than m (n >
m), is a mapping f: O = E.

f
O-&)
0 f(O) C E

Fig. 5



This map f is injective and infinitely differentiable C, whose tangent map is
injective everywhere.

An immersion is a non-injective embedding. The difference between these
two types of embedding is that the threads may or may not cross themselves.

a3 - Identity and difference

Let us now give the definition of equivalences, still in the context of
differential geometry.

The equivalence relation corresponding to embedding is isotopy. Two
objects O and O' are isotopic by a differential isotopy.

The equivalence relation corresponding to immersions is regular homotopy.
This relation allows us to move from an object O to an object O' by crossing
the string elements exclusively at the points of intersection.

A crossing is said to be clean when the two overlapping elements are from
the same loop of string. In a clean knot, made from a single loop, there are
only clean crossings. There is therefore only one clean knot relative to
homotopy equivalence. For this relation, all knots are equivalent to the trivial
knot, the simple loop.

a4 - Methodological considerations

We have said that we are using differential geometry (diff) to give these
definitions. But our aim is not to draw readers who do not do mathematics
into this field. On the contrary, we want to give them the means to
experience the knot by staying close to the realizations obtained with string
or by practicing well-constructed drawings of these configurations. We
invite them to experience topology, not to do mathematics, provided they
remain logicians.

This position is consistent with Freudian theory if we remember the lesson
given by Lacan in his seminar on Edgar Allan Poe's short story "The
Purloined Letter" [2. E].

In this story, the very precise division of space does not allow the letter to be
found. On the other hand, Dupin, by putting on green glasses and becoming
more directly involved in the territory, by engaging with it, finds the only
way to isolate the letter in the space of the minister's office.



It is a concept that no longer considers space parte extra parte, as was the
case with Greek geometry. Thus, G. Ganguilhem, in a remarkable essay [50],
finds that the circumstances of Antiquity may mitigate Aristotle's error; he
knew no other mathematics and effectively declared, for a long time, that it
was impossible to use this discipline in the study of organisms. But this great
professor of the philosophy of science finds it unforgivable on Bergson's part
to have peddled the same judgment, when he himself had been trained in
mathematics at a time when topology already existed.

In our case, we are certainly not proposing to use it for the study of organic
life in biology, but rather for the study of language and political ethics in
psychoanalysis. It may therefore seem ironic and regrettable that the same
judgment persists in this discipline, where the organic relationships of
discourse, revealed by its practice, reveal such a structure.

As a result, our method of reading nodes, presented in the following chapter,
is based on a simple but effective topological structure, refined by Lacan in
the previous chapters of his seminar, in terms of graphs and then surfaces,
for those who have a taste for simplicity.

You can therefore follow us in our exploration without resorting to
particularly sophisticated techniques, provided you stick to the robust
categories we propose and apply the elementary logic that can be found
there.

Of course, we are not unaware of the results obtained in knot theory since
the beginning of the century, which would undoubtedly not have been
demonstrated without the techniques that produced them. We always try to
present them to the reader through topology in extension, in a simple and
accessible way, as we propose to do in the construction sketch that follows.

This construction shows how the knot can disappear under certain
conditions, and warns us against the fact that the mode of investigation
should not unexpectedly trivialize the structureZ.

5. Let us clarify the main function of the node

al - Antoine's construction

We must mention here L. Antoine's memoir "Sur 'homéomorphie de deux
figures et de leurs voisinages" [5] and [28], published in 1921, to illustrate

the importance of knot theory in mathematics and its logical resonance,
which explains why we would resort to its topology in the Freudian field.



L. Antoine studies the case of two curves c1and c2, each located in space E,
which we abbreviate as follows:

L, 0-10)=C, C E

t‘::{j—:-f::()}:tf: — E

to indicate that these two curves are nothing more than two different
immersions of the same object, the circle O. And he examines the extent to
which the homeomorphism f, i.e., the topological equivalence that always
exists between these two curves, can be extended to their neighborhood in
space, i.e., a part of space that is more or less close to the space in which
they are immersed; This can be represented graphically as follows:

O - C,cV, CE

1] I o lo
O - (G, C vV, € E

The notion of more or less close extension is conveyed by the position of ¢
between fand ®.

The existence of the extension ensures that there is nothing more singular
between c1 and c2 than between vi and v2. The impossibility of extension, on
the contrary, indicates that there is something between C1 and C2 that does
not go beyond a certain neighborhood; we will then say that there is a knot
between C1 and C2 in space E.

There is indeed a homeomorphism f between c1 and c2, since they are two
embeddings of the same object O. This means that a circle embedded in
different ways remains, intrinsically, the same. This notion is itself crucial to
our problem.

Three cases are then possible:

— 1st case: where the homeomorphism of the curves extends to the entire
space from f'to .

— Case 2: where the homeomorphism extends to a neighborhood that
exceeds the curves without encompassing the entire space from f to ¢ but

not to P.



— Case 3: the homeomorphism of the curves cannot be extended to any
region outside the curves; f does not extend to ¢ or ®.

To say that f extends to ¢ or ® is to say, conversely, that there exist
homeomorphisms ¢ or @ of which f'is the restriction.

1 In the case of plane curves, we are always in the first case, i.e., there are no
knots in two dimensions. The structure of the curve completely determines
the structure of the space that contains it.

We say that in this situation the knot is trivial. There is no knot.

2 - On the other hand, for curves in three-dimensional Euclidean space, all
three cases can occur.

In this case, there will be a knot.
This knot can be erased.
Particularly when our curves are embeddable in a toric neighborhood, itself

embedded in three-dimensional Euclidean space, f can extend to this toric
neighborhood itself, without extending to the entire space.

Ci ¢ V4 C; C E,;

o.@

fl

O. O

C>CE
CECVE ; 2

Fig. 6



The homeomorphism f from ¢ to ¢z extends to a homeomorphism ¢ between

two toric neighborhoods, as we will show, but does not extend to the entire
space, i.e., to P.

Since the homeomorphism f does not extend to the entire space, i.e., ®, there
is a knot. We will not show this.

But the extension of f to ¢, a homeomorphism of the torus of which f is the

restriction, shows that the knot disappears locally in a space of lower
dimension. We will say that it trivializes or disappears in this case.

Demonstration of the homeomorphism @, extension to the toric neighborhood of the
homeomorphism f

Let us show the identity, for the topology, of the two situations where the
circle is differently embedded in the surface of the torus.

Fig. 7

This transformation applies intrinsically to the surface of the torus?®.



Let us provide a frame-by-frame commentary on this argument in favor of
topological equivalence relative to space.

11 - We cut the torus along the trefoil knot. There is only extrinsic
discontinuity,

©OE

Fig. 71

© - We continuously reduce the object to show that it is indeed a knotted and
twisted ribbon.

©©

Fig. .

3 - We undo the knot in the ribbon. There is only extrinsic discontinuity.




- We reduce the half-twists in pairs to obtain a belt without twists, which
still preserves the intrinsic continuity.

OC

Fig. 74

ts- We deform the belt into a cylinder:

U

Fig. 75

- We are only bending the cylinder:

(J
Fig. 7

7- We close the torus. This extrinsic counter-continuity still does not
contradict intrinsic continuity.



Fig. 77

It is important to understand the equivalence of the knotted and twisted
ribbon with the belt, which explains the homeomorphism j.

There are, of course, different and sometimes more subtle criteria that may
require further clarification in this game of topological equivalences, but the
register we have chosen here, while still necessary, is sufficient to show what
the knot between different extrinsic positions consists of and how it
disappears in certain intrinsic situations.

3 - L. Antoine effectively constructs a curved arc on a torus whose
correspondence with a straight line segment does not extend to any
neighborhood. We therefore know that there are cases where the obstruction
1s extreme, and the knot is at its maximum. We are not concerned with this
strictly mathematical situation. This means that Antoine's construction,
which is much more complicated, is of less interest to us, because in this
construction the knot does not disappear.

a2 - Let's return to the distinction between intrinsic and extrinsic

We already discussed this distinction at length in our previous work? with
reference to A. Lautman [22], in order to present the structure of narcissism
between the space of which we are the subject, intrinsic, like our own body,
the torus of the previous demonstration, and the three-dimensional Euclidean
space in which our drawn constructions are immersed, where the torus is
taken as an object, extrinsic.

Narcissism, as introduced by Freud [1. c], consists of a subject taking their
own body as an object, i.e., moving from an intrinsic position to an extrinsic
position. This distinction extends Lacan's optical schemas, which are a
generalization of the mirror stage, where an instrument as artificial as the
mirror is no longer necessary for the gaze. This formulation opens up, among
other things, our position with regard to the voice in the invoking drive. This
generalization involves formulating the structure that is at the root of
narcissism, namely the structure of language, using different topologies.



This question is also very commonplace and rooted in history; it is still of
particular interest today. If we focus our attention on the space we believe
ourselves to be the subject of, three-dimensional Euclidean space, it is easy
to extend it to give it an astronomical size. It then seems necessary, for many
contemporary subjects, to situate it in another space from which it can be
taken as an object, and thereby find themselves involved in a headlong rush,
from contents to containers, in a series of infinite nesting. However, this
extrinsic observation no longer seems necessary to astrophysicists since the
debates on non-Euclidean geometries and the work of H. Poincaré and H.
Weyl. The question of a knight who would plant his sword at the edge of the
universe(1%no longer arises in a space without boundaries, considered from
an intrinsic point of view. The difference between an intrinsic analysis and
an extrinsic analysis is not necessarily obvious.

However, we note in the constructions studied by Antoine that, since the two
curves c1 and ¢z are homeomorphic, their intrinsic invariants determine, by
virtue of Alexander's theorem [3. b], identical extrinsic invariants for their
respective complementary spaces E — c1 and E — ¢2. But the identity of these
invariants is not sufficient for the spaces E — Cl and E — C2 to be
homeomorphic. They are not uniquely determined by the curves that can be
inserted into them, and their extrinsic differences are irreducible. Here there
is a kind of irreducible relationship between an object language and a
metalanguage that disappears in the object.

If we note that the three-dimensional Euclidean space E is identical to itself
and that it is the introduction of homeomorphic, i.e., identical, curves c1 and
c2 in each of the two cases that makes it profoundly dissimilar, we realize
how much the intrinsic invariants of curves reveal about the relationship
between the curve and space in non-trivial cases.

a3 - Myth or structure of the paternal function

The situational properties, which in the two-dimensional case of our torus
example can be reduced to intrinsic properties, cease to be so in the three-
dimensional case. In this register of reality, the distinction between aesthetics
and analytics remains(1-and this distinction gives rise to a variation in the
case of our demonstration, because conversely we can say that extrinsic
characteristics fade or disappear in intrinsic analysis. This is what is new
here.

This pulsation is at the heart of our argument, as it is of the structure of
language, and establishes the relevance of our use of node topology.



There is therefore more if the structure of language, as opposed to the code
of communication, is defined by the necessity of metalanguage, an extrinsic
position, but one that turns out not to be a departure from language, as R.
Jakobson explains [51], i.e., an absence of metalanguage, a necessary return
to the intrinsic.

This is the moment when, in Lacan's optical diagrams, the mirror tilts.

This erasure of the knot, its disappearance through trivialization in the
intrinsic, requires a subject of reading in this topology, and the introduction
to this pulsation constitutes the so-called paternal function in culture. It
introduces the subject to the assumption of the structure of the signifier
through the mediation of a metaphor that best illustrates it, as the use of
personal pronouns [45], deixis, or performatives [41] are the best examples
of this in grammar. It covers an irreducible original condensation.

In Freudian myth, it has its correlate in the death of the father, establishing
the symbolic father, for reasons of structure rather than imaginary rivalry,
which remains an effect and not a cause of this function, the extrinsic
position immediately reestablishing itself, the erasure lasted only a moment,
before the knot was restored in the institution of the ever-evanescent
superego.

Our readers will thus understand how Freud made only a slight error in
proposing a mythological origin that we no longer need, since, according to
Lacan, the response to unconscious guilt is now only a matter of the subject
assuming responsibility for it.

The lack of responsibility that characterizes madness is neurotic, if we define
neurosis as a disease of the superego that consists of the subject harming
themselves. Or we could say that neurosis is a form of madness whose entry
into psychoanalysis marks the analyzing subject's decision to break with it.
This is necessary because madness is opposed, even antithetical, to the
decision to undertake the study, by putting oneself to the test through a
questioning, such as analysis, of the mental causality to which the
psychoanalytic object belongs.

There is nothing more futile and perpetual than masking this response to the
impossibility of sexual intercourse with the war between the sexes, as proven
by common experience, which thus echoes the myth of the Danaids.

The optical model borrowed by Freud to account for the spatially
unlocatable place of the unconscious, with its pulsating structure of
appearance and disappearance, is rigorously argued when we replace it with
the topological construction that deals with forgetting, going



from the dream to the time of analysis, a forgetting intrinsic to the act itself
in its difficulty for the subject.

a4 - Knots
But such erasure also occurs in higher dimensions.

For the immersions of an object Sm, a sphere of dimension m, in a space Rn,
there are no knotted m-spheres if the dimension n of the space is greater than
half of three times the dimension m of the object increased by one:

n>3/2(m+1)

Under these conditions, all embeddings of Sm in Rn are regularly isotopic
[L1].

Otherwise, if n < 3/2 (m +1), the theory of knotted spheres has barely begun.

This formula justifies our placing ourselves in lower dimensions, as
suggested by the title of Moise's book [28], since it is mainly a difference in
dimension.

Classical knot theory is a special case of the classification of immersions of
M =51 in N = R3; it is far from complete.

Indeed, 3/2 (1 + 1) = 3, and according to the previous formula for there to be
a knot, in the case of a circle where m = 1, the immersed object is the circle

s1, so the dimension of space n must be less than or equal to three.

The previous theory has analogues in the PL and TOP categories, but there
are some differences.

Conversely, for the case M = 5,1, N = R™) | a problem dating back to Jordan
and Scheenflies is whether an embedding of sn-1 in rn extends, as in the
problem studied by Antoine, to an embedding of the ball pnin R®) , which is
equivalent to the absence of a knot. This is true in the DIFF category.

In the TOP category, this extension is found for n = 2, but there is a
counterexample for n = 3, due to Alexander, and well known as the horned
sphere.



With regard to the erasure of the knot that we are structuring, let us retain the
result that ensures the existence of an embedding extension, i.e., the absence
of a knot, in TOP when n = 2.

Indeed, if n = 2, then n — 1 = 1. Thus, there are no knots made of 1-
dimensional circles in 2-dimensional surfaces, as we have already pointed
out.

Knot theory studies, by isotopy, the embeddings of 1-dimensional circles in
a 3-dimensional space.

The difference between the dimensions of the object and the space in which
it is embedded is more important in these questions than the dimensions of
the objects themselves. It is time for the reader to realize that a space can
always be taken as an object for a higher-dimensional space, just as it can be
taken in itself and have its boundary canceled by compactification in an
appropriate topology, which can avoid the idealism of higher astrophysical
dimensions, since lower dimensions are sufficient to deal with this
difference.

We will call the difference between the dimension of an object and the
dimension of the space in which it is embedded the co-dimension of the
embedding. Knot theory is a theory of co-dimension, which explains
mathematicians' interest in the space around the knot (knot manifold)
because of this subtraction.

This subtraction of space, from which we subtract the knot in which it is
immersed, highlights the importance of this complement to the knot, known
as the knot manifold, which is revealed by the fact that the knot is rather
incomplete from the perspective of classification. This incompleteness
justifies our use of the term "supplementarity" instead.

We recognize here a situation specified by Lacan on the occasion of speech.

When Lacan discusses desire, emphasizing that it should not be confused
with demand, he is making a distinction. Asking for something should not be
confused with the need that motivates that request. Desire is obtained
precisely when the need is subtracted from the demand. Desire is to be found
in this difference, just as the knot exists in the subtraction of the object,
which consists of a circle in the space in which it is immersed. We will talk
about the space of demand and the consistency of need. It is desire that gives
the demand for love its unconditional character, which cannot in any way be
reduced to need. The latter, because it is caught up in this difference,
becomes the drive. We will start from this insight to develop the notion of
the existence of the knot of desire, provided that we specify that this knot
does not exist in the



consistency but exists in the hole produced by the circle. It is the hole that
exists in consistency.

And it is indeed the function of the father, emphasized by the discourse of
analysis, to learn to detach the absolute condition of desire—absolute
meaning separate—from the unconditional demand for love. Erasure tempers
but weaves anxiety into this passage, which is collected by the object that is
said to be the condition or, better yet, the cause of desire.

Our aim is to identify this object in the field of existence of the knot.
6. Algebraic and graphical results in the space around the knot
al - Groups

Before L. Antoine proposed his construction in 1921, we had already
encountered the fundamental group in 1910 in the work of M. Dehn. The
first volume!2of our series of results booklets is mainly devoted to it. In it,
we adopted a method of calculation based on the drawing, very similar to the
construction proposed at the time by Dehn. This calculation establishes the
necessary link between our formal style of investigation through the
topology of the knot and the mathematical techniques we discuss in this
chapter.

Another way of calculating this group, for each node and each chain, is more
widely used today because it is more suited to mechanization. This method
was developed by Wirttinger, and is well known by that name. However, we
prefer Dehn's method, as it allows us to work directly on the figures and
because our process forms words in the areas, which we then use(13%-

We refer to Essaim for the question concerning algebraic topology, of a
correspondence between topological objects, such as knots and chains, and
algebraic groups. At the time of writing, it had not been proven that the
correspondence between prime knots and groups was bijective. This
situation justified A. Gramain [15. a] giving only the first part of his report to
the Bourbaki group on classical knot theory in 1976.

Since 1989, this has been done for proper knots.
We already knew that two proper knots (or two chains) that are equivalent

by isotopy have identical fundamental groups, but the converse had not been
proven.



The proof of the theorem that ensures the homeomorphism of the
complements of two proper knots whose groups are isomorphic was
established by

W. Whitten [39] in 1987.

C. Mac A. Gordon and J. Luecke [27] proved, in 1989, the isotopy of two
proper knots whose complements are isomorphic.

Thus, today we know that two prime proper knots with isomorphic
fundamental groups are isotopic [15. b].

There is no equivalent theorem for chains made up of several circles, and
this state of affairs explains why some mathematicians today are so
interested in the polynomials corresponding to knots and chains.

Our own results fall at this juncture, between proper knots and chains made
up of several circles. We will show below how a correlation is established
between proper knots and certain chains.

We must also take into account, with regard to the fundamental group of
knots and chains, the two articles by J. Milnor [29. a and b], in which P.
Soury [35] attempted to draw a link between this great mathematician, who
was passionate about topology, and J. Lacan's work on knots. He highlighted
the correlation between Borromean chains and centralizer series in group
algebra.

a2 - Seifert surfaces

There is also a process for determining graphically, directly from the
drawing of a knot or chain, a surface that can always be oriented. This
surface, known as a Seifert surface [36], is constructed using defined cycles,
called Seifert circles, on the oriented representation of the knot or chain.

Let's illustrate this method with an example that is easy to generalize. If we
start with an oriented presentation of the knot or link:
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Fig. 8

We remove the crossings from this figure in order to retain only the oriented
arcs.

Fig.9
We must then find a way to join these oriented arcs in order to form Seifert

circles, which are disjoint oriented cycles that respect the orientation of the
given arcs.

Fig. 10



At this point, we can label the circles with different orientations using the
numbers +1 and -1. We will call the sum of these values the Seifert number.

Here, for example, & = +3.

By restoring the initial intersections in this figure, we obtain a montage of
superimposed discs, joined by twisted straps, the Seifert surface in a
presentation of stacked layers, seen from above.

_y

Fig. 11

This surface, which is always orientable in Seifert's case, allows the knot or
chain as its edge. We can always transform it into an orientable empan
surface!4 by changing the presentation appropriately.

The span surfaces that we define in the following chapter, and which we
already discussed in the previous work, are a generalization of these Seifert
surfaces. We will refer to them as orientable span surfaces. They will play a
prominent role for us. In the case of alternating chains and knots, they will
specify what we thus isolate as non-knots.

7. Movements

We can finally approach the beginning of the theory by giving the
elementary movements due to Reidemeister [8], whose composition ensures
equivalence between two presentations of flattened knots or chains.

There are three Reidemeister moves. The first makes or undoes a loop, the
second makes a non-alternated stitch, and the third move modifies a non-
alternated triskel.
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Using these three generating moves, we can account for any change in the
presentation of a given diagram of a knot or link to another presentation of
the same knot or link. Describing these changes in presentation using
elementary moves ensures identity by isotopy, also known as ambient
isotopy.

In the case of changes in presentation that only use movements M2 and T3,
we refer to identity through regular isotopies.

These modes of equivalence, in terms of movements, being well defined by
mathematics, make it possible to dispense with more detailed descriptions,
although these are present in an underlying manner, and therefore lend
themselves to an abbreviated calculation that can be performed by drawing.

The most recent polynomials, which are invariant or regular for these
objects, are respected by these movements, depending on whether we favor
ambient isotopy or regular isotopy. The same applies to the orientation or
non-orientation of circles.

These distinctions give rise to different polynomials.

8. Polynomials of knots and chains

But let us return to the chronological sequence of works from the beginning
of the century that we mentioned earlier, to now encounter results that lead
us, through an algebraic approach, to the most recent state of the theory.
Apart from the construction of the fundamental group and other homotopy

groups, which have been among the main techniques of topology since
Poincaré, we owe Alexander his famous polynomial in 1923, which



inaugurates, more certainly than Listing, the series of this type of invariant
that will give the most current and precise knot invariants.

Let us now enumerate the progression that has continued to the present day.

After Alexander, we can place J. Levine [23] in 1965-1966. Then mainly
Conway [8] in 1970, building on Alexander and developing Tait and Little.

We owe Conway the construction of a relationship between knot
polynomials. This relationship is written between three polynomials,
corresponding to three chains or knots, which differ from each other only at
the height of the same crossing. If we start with a flattened knot, the knots or
chains obtained by inverting and smoothing a crossing correspond to
polynomials related to the polynomial of the starting knot.

This relationship can be written as:

xPX + }'PX = {Px

It gives rise to a polynomial calculation process, Conway's skein calculus,
which we will discuss in the appendix to this book.

In 1985, W. Jones [17] produced a new polynomial that differentiates knots
more precisely, in particular the two trefoil knots. This advance represents a
very important result.

In 1987, five different teams of mathematicians simultaneously constructed a
generalization of the Jones polynomial.

The journal that received their contributions suggested that they write a
single article [16], signed with their respective names, with a comment
specific to each of them. This polynomial, named after their initials, Homfly,
is a version of the Jones polynomial with two variables.

These different algebraic expressions are invariant up to ambient isotopy for
oriented knots and links. Other polynomials invariant up to regular isotopy
can be associated with them.

More recently, L.H. Kauffman [18. d] constructed various polynomials for
unoriented knots. His calculation is based on the relation:
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Kauffman's polynomial provides a very elegant way of recovering Jones'
polynomial. (See Appendix Chapter II). Following Jones' discovery in 1984,
it appears that we can move towards a vast family of chain invariants
indexed by a Lie algebra g and an integer (level) & [19].

9. To situate our work

L.H. Kauffman showed [18. c] that, in the algebra of solutions to Yang-
Baxter equations, a calculation plays the same role for knots and chains as
linear algebra does for Euclidean geometry.

It is remarkable, at this point in the theory, how Reidemeister's third move,
T3, which exchanges non-alternating triskels, reveals a principal function,
which we will use later. We will propose a different approach to this.

In the next two chapters, we propose another orientation in chains and knots.
This is in order to clearly define the knot. We see it appear in the
relationships between entanglements and what is a knot. The knot is a
curious organism that disappears under certain conditions, which can be
quantified in our topology of dimensions.

This orientation and the terminology derived from it are particularly relevant
for alternate objects made of one, two, and three circles, thus offering a new

approach to dimension.

Using a method of coloring presentations (diagrams) of knots and chains, we
isolate characteristic cuts in each alternating presentation.

Non-alternation is homologous to this cut. Non-alternability and cutting can
even disappear in the case of two circles.

The study of the variation in the cut, in the case of chains made up of several
circles, leads us to formulate a relationship:

Cp—2%p~— vi—2%i



which is the subject of the main theorem of this first part and remains valid
regardless of the number of rounds, whether the object is alternable or not.

This relationship is verified for any presentation and establishes a link
between two types of orientations, torsion and characteristic.

A tension arises in what follows between the graphical description we arrive
at for alternable objects and the nodal plasticity of the entanglement and the
knot. This tension is established around a small arithmetic of the knot and
the entanglement.

In the three middle chapters, we will tackle the study of the graphical
description of alternable objects and the study of nodal plasticity head-on,
dividing each chapter according to this criterion.

We will undertake the study of the graphical description of alternating chains
and knots, which is deduced from our colorings and provides a new
enumeration of these objects. The eminently nodal question of non-
alternating objects remains. This is why we accompany each of these
descriptive parts with arithmetic and plastic concerns that will lead us to the
final problem of this study.

Initially, the average cut number s, which stands out from these results, can
be interpreted through Reidemeister moves and proper (homotopy) and
improper Gordian moves

, which we define here for the first time.

The number 5, is the sum of the number of knots and the average cut number
o of the non-knot contained.

To this end, we propose a theory of non-knots for objects made of one to
three circles. This theory will lead us in the last chapter to the definition of
the knot number.

Another type of movement, knot movement, which is also defined in this last
chapter for the first time, gives another interpretation of s and leads us to the
knot number.

This number is an invariant of ambient isotopies. It is defined in terms of
orientation by torsion. This number is added to the well-known linking
number, which depends on orientation by characteristic in the study of knots
and chains.

But in order to better compare these two remarkable numbers, we propose a
new calculation of the number of entanglements for objects made of



one to three circles, in terms of torsion, using the concept of contained non-
knots, thereby calibrating the number of links and the number of knots.

This new way of counting entanglements reveals a structural break between
chains made of three circles and chains made of four circles. This break is
relevant to the definition of dimension and allows us to understand the stakes
of Lacan's last seminars. It is a matter of homogenizing the impossibility of
representation with the structure of language at play in analysis.

This structural flaw will be the subject of our next book, the title of which
can already be announced: Pas, les chaines de quatre ronds et plus (fascicule
de résultats n° 4).

In the last chapter, we will return to the nodal aspect that interests
psychoanalysis in order to situate P. Soury's work in relation to the
constructions sketched out by Lacan in the last years of his seminar. This
will allow us to situate our own contribution to this debate, before returning
to it in the last volume of this series of works. This final volume, Si étroit
comme treize et trois... pas large, le borroméen généralisé (results booklet
no. 5), will be devoted to the study of the generalized Borromean knot as
Lacan designated it in 1978 and to the theory that can be deduced from it.
This will be the theory of generalized knots, which is the theory of knots that
we propose for psychoanalysis.

We will therefore be led to define several theories with different objects in
order to filter the trickle-down effect of the multiplicity of chains and knots.

Before formulating, for the proper knots and chain knots of classical theory,
a relationship of equivalence that subverts the number of loops in order to
enumerate them in a more relevant, more topological than descriptive way,
and to deal on this occasion with the distinction between proper (one) and
improper (several).

So, after this first chapter of pure scholarship, which can serve as a working
tool for those who want to get involved in this field, let's begin to approach
the knot in our own way, which is more topological than mathematical.



Chapter 11
The method for reading a knot
1. Analysis of an example of a knot

The title I have chosen for this chapter indicates which approach to the problem of the knot
I am inclined to follow, among the less traditional ones. I propose to show what can be read
from the knot, and if I contribute to clarifying some of the questions dealt with in the
scientific literature concerning knots, this will be only an incidental benefit, a side issue to
the essential problem I have to solve. My assumption that knots lend themselves to being
read places me elsewhere, between numbers, letters, graphics, and plastic dimensions,
despite the prevailing theories, and in fact despite all knot theories [18 a and b].

Changing topology means changing object, as Quine [57, p. 119] says in another context.
But this does not mean forgetting classical theory.

Claiming to be readable requires some explanation. We are careful not to say that this
practice of knotting is a form of writing, not to write that the knot is a letter.

Saying this is another issue that requires some preliminary clarification so that anyone can
claim to accept the consequences of the answer we intend to give. We will not present our
theory of writing here.

For now, we will limit ourselves to showing that these knots and chains are legible, just as
there is legibility in the notches carved into the bone found at Mas-d'Azil and preserved at
the museum in Saint Germain-en-Laye.

This phase of legibility is necessary for writing as such to come into being, even before we
can speak of a constituted writing, before we can claim a specific writing in psychoanalysis.
Thus reversing the naive order of precession between writing and reading [53] and [2 Sém
IX, lectures of December 20, 1961, and January 10, 1962], we will speak of the reading of
objects that our modern minds would be wrong to equate with an imaginary, even
animistic, projection. This term explains nothing, just as the term suggestion did nothing to
explain hypnosis before Freud's discovery of the libido.

Writing will therefore be another step, the act of those who, linked together by discourse,
by a social bond, use, in their actual practice, material that is already there, or other
material, but always recycled material, the remnants of another discourse that has fallen
into disuse.

First, we would like to clarify that our use of the term "reading" is not an analogy, as is
often the case. Reading a presentation of such objects is not like reading coffee grounds.
Here, there remains the distinction between calculation and language, where the metaphor
comes into play, whose principle is meaningful condensation that stems from an involution.



Reading is such an involution between the gaze and the voice. The most assured
presentation of this structure is given in our first booklet, in terms of truth first, to extend it
to speech, the insoluble utterance to communicationists who cannot help themselves.
Speech leads us to the knot [59 ¢ and d].

As we have seen, scientific theories of the knot do not place the problem of reading at the
forefront of their concerns, as it is already fully addressed by the algebraic component of
their approach. For them, it is less apparent that the knot is an opportunity for an act to be
performed by the subject who practices the object and who loses himself in a condensation
of the numbers that flow around him. They aim to substitute a known writing for a
topological body and do not distinguish between the two stages, graphic and plastic, after
that of empirical observation.

Thus, these two aspects, graphic and plastic, are very little differentiated with regard to the
identity of the nodes recognized thanks to the algebraic invariants of standard mathematics.

The latter seeks to replace, in the name of algebraic topology, the plastic object with an
algebraic group lor a polynomial 2, this object of algebra being a special case in a vast
family of more sophisticated and already known invariants [18 c, and 19]. This is the first
point.

In our approach, the formalization of the object is not to be confused with mathematization.
Like the formation of statements, it differs from the demonstration of theses in a formal
language in mathematical logic. This confusion is caused, rather than resulting from, the
forgetfulness in which our significant alienation occurs.

Our formalization, on the contrary, takes condensation into account since it is a graphic
formalization of the presentations of these topological objects and a mathematics of their
plasticity. This is the main point, examples of which can be found here in coloring, cutting,
the duality of presentations, Terrasson's graph, regular montages, Gordian movements, and
knot movement.

Encryption has a history, and the lack of distinction between calculation and language plays
a prominent role in the inertia that exists in recognizing the actual actions performed in
these practices. There is a subject at this stage, even if it is doomed to be dismissed once the
process is complete.

Then comes the stage of mathematization, if it takes place, when a structure is found, the
prototype of which remains the example of algebraic structures and their role in number
theory. Here there is a conversion, in the psychoanalytic sense of the term, of a series of
indices into symbols because of this structure, which acts as a text, as a context for these
elements.

This interpretation assumes that drawing is an opportunity for an involution between place
(topos) and discourse (logos) correlated with sight and voice. We will consider it as
accomplishing a break, which is only justified once it has been flattened and written, in
algebra, in lowercase letters, with the numbers that we can assign to it or attribute to its
singularities, which thus flow down onto it. This may be erased in practice



but we cannot forget or ignore it if we intend to use it. In fact, there are theorems relating to
the graphics and plasticity of the node.

Let us define the significant involution that is the subject of our topology as "the copula that
unites the identical with the different" [2 Sém XIV, le¢ 15.02.67].

We will show, at the same time, on the side of numbers and algebra, what escapes this
graphic presentation, the problem of non-alternable objects, but which is dealt with by the
finally isolated plastic aspect. That is, what is forgotten but insists through its plastic
presence, thus showing the main topological difficulty of all future theories of the knot.

Having emphasized the difference between formalization and mathematization, we must
highlight, in approaching this involution, the existence of "the charter of structure"
emphasized by Lacan [E a' 21 p. 75] in the context of the historically significant example of
Newton's formula of gravitation.

This formula cannot be understood, but it is explanatory, illuminating, and above all,
resolutive. Lacan thus introduces the notion of the littoral function of the letter to designate
its retroactive effect of upheaval [E a' 23 p. 5]. Here we can see that, at the extremes, it is
neither the trace nor the impression that supports the metaphor of the letter he uses at this
stage and the practice of reading in psychoanalysis. This practice is situated, as in
mathematics, between that of the Oracle of Delphi and that of J.F. Champollion.

To link this question of modes of expression to what we are concerned with here, we will
focus on the most accessible aspect, but one which, once again, should not be reduced to
crude similarities. In terms of material, let us show how chains and knots can be used as a
practice covering the entire spectrum of writing.

This spectrum ranges from the mathéme to the poem. They are linked if we do not forget
the signifying involution that is at the root of this range. From the use of a single letter in
logic to the practice of calligraphy. Glimpsed by Wittgenstein, it immediately returns to the
sidewalk. We thus make our contribution, with these few clarifications, to the
developments required by Lacan's indications.

— On the side of the mathéme for chains and knots, it is a question of referring to the
structure of a statement, a text, a piece of writing, as is done in symbolic logic with the
grammatical notion of well-formed statements, but which risks, as we have already
emphasized, masking the reflection of signification if we are not careful. This consistency
can be taken very far in their strict use, as shown by the notion of assemblages in set theory.
Here, it is the consistency that is usually masked by meaning, as evidenced by the authors
of the books signed N. Bourbaki. These assemblages do not designate sets, they are the sets
themselves [2 Sém XX, Encore, pp. 46-47]. We will discuss the strict use of letters in
mathematics on this occasion.




For example, in Bourbaki's Book I, entitled Set Theory [40 p.E 11.6], the character called the
empty set:

Destdonc T eT € 0O0O0O

This strict nature is rarely noticed and rarely studied for a reason that has to do with the
prohibition of the very existence of the structure itself. We could then return to the link
between intuition, not only mathematical but also philosophical, and the validity of
statements whose writing is yet to come.

The quality of a knot, and among these, a Borromean knot, will have this function of
holding, unlike other chains, but this is not enough. We must not forget that between
statement and utterance, between object language and metalanguage, this holding is
subject-dependent but can always be formalized to the point of destitution of this subject.

It is true that this strict usage quickly exhausts itself in supporting itself in practice, to the
extent that certain function symbols are introduced. This is particularly true in classical
mathematics with the introduction of the mathéme (f: a = b), which writes the application
in set theory [52, p. 21]. This exhaustion requires further efforts at formalization, but does
not

rejects them all.

— In terms of poetry, writing goes so far as to suit the art practiced with ink and brush,
Chinese poetic writing [42].

There is a function of writing that is eminently metaphorical, provided that it no longer
owes anything to analogy here either, whose doctrinal reference can be found in a text by J.
Lacan (pp. 493-528) when he discusses the instance of the letter in the unconscious.

As we explain in the introduction to this series of works, this function extends to the
example of the writing of their language, borrowed from China by the Japanese, as it is
commonly practiced in the discourse of analysis and provides a pole of materiality.

Let us give another example of such writing, which is only valid in the context of the
results gathered in this work.



désir - coupure

We maintain that the knot can be inserted into a topological writing of holes, the place of
existence of the structure of the subject, as an important link, similar to others and of equal
value. This writing of the drive (Trieb) realizes what Freud says about it [1 d], what Lacan
specifies [E a 30, pp. 846-850], it depends on the edge, the knot, provided that a surface, the
libido, is placed there, which turns out to have a structure, desire, our cut. We began to
elaborate this topology of holes through the theory of intrinsic surfaces(*:-24we continue it
here.

This reading of the knot implies, as we have said, assigning it a topological structure, a
component provided by the various theories whose definitions are set out in this work.
What would we say about a Japanese scholar who, when reading a text written in Japanese,
claimed to be unaware of the archaic Chinese reading of the letters he uses to write
contemporary Japanese? Our contemporaries may claim to accord it only a purely scholarly
importance, supposedly outdated, foreclosed since Lacan's death, but horror remains linked
to the prohibition in action, particularly in psychosis, since this prohibition returns in the
real.

We will return to this reading practice in our last chapter in order to give a nodal
presentation of the clinic of the sinthome with the Freudian structures of neurosis,
perversion, psychosis, and analysis, and their mutual articulation, which causes so many
difficulties in reading for the analysands of Freud and Lacan due to the lack of their
topological component constructed here.

If we take into account the entire spectrum of variation, we see the effective exercise of a
pulsation between the graphic dimension and the plastic aspect of the object, whose
invisible presence we have already*emphasized in relation to masks and tattoos, as being at
the principle of identification in the Freudian sense [59 a].

This is something other than the use of images [46] in explaining the function of symbols
[49, p. 652] [53]. This question must be revisited starting with Gide's character, as Lacan [E
a 27] points out in paying tribute to J. Delay, who effectively addresses it at the beginning
of his essay on Gide's youth, but this aspect must be extended to the point where we are
taking it here.

This was our second point.



Thirdly, with a view to this practice of drawing, we construct an algorithm that was
previously lacking and apply it until we extract a formula for nodal gravity that corresponds
to it.

This algorithm, extended to several circles, is required by this topology, as Lacan pointed
out in a lesson from his seminar [2 Sém XXI, lec 12.03.74].

A more rigorous algorithm, which he wanted to construct at the time, for the knot insofar as
it involves more than one circle of string, as he puts it, and extending, as he later says,
Dehn's well-known lemma in the case of proper knots, made of a single circle.

We propose, at the same time, to undertake to address the articulation of the one and the
multiple [55]. For we must be mindful here of the fact that Lacan evokes, in addition to this
algorithm, in this same lesson, at a specific moment in his teaching, a passage that he says
he has already made from the Borromean knot (several circles) to the trefoil knot (a single
circle). The previous year, in his seminar [2 Sém XX, p. 111], he had briefly touched upon
the idea that it is necessary to refer to the Borromean knot in order to study the first primary
knot, the trefoil knot(2-

This remark will occupy us for a long time to come, if we note that Lacan used this
procedure only in the last seminar lesson of 1979, in December [2 Sem XXVII], before
dissolving his School in January 1980. We do not know whether he ever explicitly defined
this passage, which we will nevertheless construct, with the knot movement(®-thanks to the
means we now wish to provide.

It is also remarkable, and worth noting, that this seminar lesson [2 Sem XX, lesson
15.05.73, pp. 111-113] is constructed according to the same plan and presents the same
objects as the chapter dealing with knots in a book on popular mathematics [58, pp. 261-
268].

Let us clarify the terminology we are adopting to begin discussing our subject.
When we study an immersion of several circles, we will refer to it as a chain (/ink). When
we study an immersion of a single circle, we will refer to it as a proper knot, in accordance

with Conway's terminology (proper knot) [8].

This distinction is important here, because our analysis will reveal the existence of chains
with constant cuts. We will refer to this type of chain as improper knots or /ink knots.

In all cases, we refer to objects when talking about chains or knots interchangeably.
We will begin by formulating, in this chapter, the algorithm predicted by Lacan. al -

Preliminary account



We will work from presentations (diagrams) of knots or chains laid flat in a general
positionD—which we will refer to as flat diagrams S.
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Fig. 1

In the general case, a presentation is non-alternating.

Alternation of a presentation

We say that a presentation is alternating if, when going through each component in

succession, each strand of string alternately passes over when it has passed under and under
when it has passed over the string loops it encounters in succession.

SHIH

alternance non-alternance
Fig. 2
We will refer to a non-alternating presentation in the opposite case.
For any object in a given presentation, if it is not itself alternating, we cannot be sure that

there is an alternating presentation. There are therefore alternating objects and non-
alternating objects.



Starting from the flat diagram S, it may be tempting, in order to quantify the alternation, to
naively mark with a plus sign (+) the crossings where a component passes over and with a
minus sign (—

) at the crossings where it passes below the string elements it encounters.

Fig.3

But the irony of this structure remains that when we perform this calculation on all the
components of the object, which is done from the very first in the case of a clean node, we
find that all the crossings are marked in the same way by the presence of both signs, + and
—, at each of them.

Fig. 4

Let us propose a coding of the alternation that shows the consistency of this particularity
and will enable us to clarify, using our method, what this distinction is based on.

Freudian quantification

We therefore proceed differently, and we can even say in a manner contrary to this initial
intuitive tendency.



Here we discover a particularly Freudian calculation, in the sense that it must have been
Freud who discovered the Ics in order to calculate intuitively in this way—remember his
interpretation of the dream of "the beautiful spiritual butcher" that contradicted his theory
of dreams. We are not even trying to find out how it came to him; we simply acknowledge
it in order to situate what psychoanalysis depends on. The psychoanalyst's desire includes
this unknown.

Starting from the flat S diagram, in order to quantify the alternation, we propose marking
the first intersection with an indifferent sign, for example the plus sign (+).

Then, starting from the intersections already marked, we go through each component:

— to place the same sign as the preceding one at the next intersection if this component
alternates between one intersection and the other,

— to write the opposite sign to the previous one at the next intersection if this component
passes from one intersection to the other in a non-alternating manner.
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Fig.5
This means that we apply a numbering principle that we formulate as follows:

When the string elements are alternated, we do not alternate the signs; when the string
elements are not alternated, we alternate the signs.

This can be seen even more clearly in the following fragment.

— _:_f_‘*\l:..-
V)

alternance des croisements non-altermance des croisements
constance des signes alternance des signes

h

Fig. 6

We refer to this type of notation as Freudian.



Let us perform this coding on the same example, starting as follows:

+

N7

Fig.7

Once completed, it gives the following result:

Fig. 8
where we can see that, among the crossings, there are two halves that alternate within
themselves but are not necessarily connected, or, if you prefer, two types of crossings:

crossings marked with a plus (+) and crossings marked with a minus (-).

We will introduce a new orientation® into these presentations in order to reflect this fact
and give meaning to these figures, which currently only exist in graphic form.

a2 - Node of July 23, 1993
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Présentation d'une chaine non alternée, mise a plat®

Fig. 9
a3 - Analysis

Let us illustrate, in three drawings, the main stages of the analysis that we will carry out
using coloring thanks to our algorithm, for each node and each chain.

/

Premier temps. Deuxiéme temps. Troisieme temps.
La surface d'empan de La surface d'empan est La coupure qui oriente la
la présentation donnée. non orientable. surface.

Fig. 10

The colors we use here are rendered by patterns that are used consistently. Their respective
functions will become apparent over the course of the different stages.

2. The three algorithmic stages

We now present a very simple initial coloring method for studying each flattened node or
chain.



2.1. First step: the span area

This defines the span area of the given presentation.
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zones adjacentes
dans un schéma plat

Fig. 11
al - Purpose of this step

It aims to reveal a surface in the drawing of the flattened object; this is a true surface drawn
without its folds.

The folds appear as half-twists of straps. We obtain a damage of

the plane.

a2 - Process implemented

Equipped with a binary set of signs, we scan and mark all the areas by passing through the
arc portions!® and changing the sign from one to the other. This crossing is done in the

middle of each arc portion, avoiding intersections and their proximity.

All adjacent areas of the flattening are then marked with opposite signs, bearing in mind
that two adjacent areas are separated by an arc portion.
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zones adjacentes
dans un schéma plat

Fig. 12

To define the span area on the example of our object, let's give ourselves a pair of signs,
such as (+, —) or (0, 1), or (white, gray) or any other pair of distinct and opposite signs that
we use as primary differential elements.

Let's start by placing one of the signs in any area, using the binary (0, 1) here.
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The sign 0 is written in a first area. Let's move straight across a portion of the arc to an
adjacent area. We will write 1 in the area we have reached. Then, from this area marked 1,
let's move to another area by crossing another portion of the arc where we write 0.



We continue in this way from zone to zone, always crossing the arc segments in the same
way, avoiding intersections, until all zones have a sign (0 or 1).

Fig. 14
Note that this algorithm never leads to a contradictory situation: the same area will never
have two opposite signs; on either side of an arc segment, there will never be the same sign,

as confirmed by Jordan's theorem of plane curve theory.

We therefore obtain two distinct sets of areas: those with the sign 0 and those with the sign

Fig. 15
End of the algorithmic process.
a3 - Evaluation of the result

We then adopt a terminological principle that will allow us to define the span of a
presentation.



The scope of a presentation
We agree on the following.

The set of areas marked with the peripheral area sign is the set of empty areas in the given
presentation.

Therefore, we define the set of solids in this presentation as the set of areas bearing the
opposite sign to that of the peripheral area.

Thus, the set of solids, respecting this convention, connected by half-twists, defines the
span surface of the presentation.

Let's color this surface to highlight it. The knot or chain then appears as a distorted
checkerboard.

The span area of the given presentation. Fig.
16

Let P be the number of solid areas (here, P =11) and V the number of empty areas (V =
10), not forgetting the outer area.

The first step of the algorithm is complete.

Now, if we denote C as the number of crossings, we have the formula derived from the
Euler-Poincaré indicator!! of the sphere, when paving this sphere with the graph of the
solids, or its dual, the graph of the voids!2.

This formula tells us that the number of solids (vertices of the graph of solids) minus the
number of crossings (edges of the graph of solids) plus the number of voids (faces of the
graph of solids) is always equal to two on the sphere. This can be written as:



P-C+V=2

which we can transform using a small calculation similar to arithmetic, which is legitimate
since these letters are supposed to refer to numbers. Thus:

P+V=C+2

which gives us what we will call the elementary formula of the node: C=P +V —2 or,
in our general case: C=11+10-2=19.

a4 - The case of alternating presentations

In alternating cases, in their alternating presentation, the minimum number of crossings
allows the search for the presentation of the minimum span area.

In these cases, we designate the most numerous areas as full of the minimum span area and
the less numerous areas as empty.

Minimum number of crossings

We are certain that for each object there are presentations with a minimum number of
crossings; we will call these minimum presentations, but we do not know how to find them
in all cases.

When an object is alternable, its alternating presentation is minimal, and L. Kauffman has
demonstrated, using his polynomial, in the context of the first step of our algorithm that
determines the span area, that this minimum number of crossings is a topological invariant
of alternable knots.

In the case where the alternating presentation is found, we are assured that the object
studied is alternable and therefore in its minimal presentation.

In their alternating presentation, if it exists, thanks to the colorings produced by the
algorithm, we will be able to determine the graphic type of the objects. This typology will
only be a starting point for terminology, given the nodal and plastic structure that can be
discovered from there.

These colorings also remain feasible in any non-alternating presentation, and provide us
with valuable information for counting interconnections, for example, or for the use of

transformations.

The minimum span



In the alternating presentation of an alternable object, the set of the most numerous areas,
chosen as full, connected by half-twists, defines the minimum span area. The empty areas
must be the least numerous areas.
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Fig. 17

Here, the span area of this presentation is the minimum area, because V = 4 is smaller than
P=5.

However, the minimum area, defined by the solid areas, does not always correspond to the
span area of the given presentation as we have defined it.
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Fig. 18

For example, here the area of this presentation is not the minimum area required, because P
=3and V=4.

There is a need to exchange the quality of full and the quality of empty between the two
sets of areas defined by the algorithm in order to reverse this ratio and obtain P =4 and V =
3.

However, the area obtained is no longer the span area of the given presentation; it no longer
meets the condition that we imposed on this area in its definition in order for it to be
considered as such. It is therefore the span area that meets this definition to be that of the
dual presentation.



Let's explain this by giving precise definitions.

Duality

We will refer to the exchange of solids and voids!3in a given presentation as duality.
Dual surface

We will refer to surfaces that are dual to each other, the two surfaces obtained from each
other through duality.

In the case under consideration, where we are looking for the minimum span surface of an
alternating presentation, in the presence of this minimum surface, dual to the surface of the
given presentation, we must remain attentive to the definitions.

However, the previous convention, which defines the span area of a presentation, requires
us to change the presentation if we want this dual area to be the span area of a presentation,
so that the empty areas have the same sign as the peripheral area, as required by this
definition.

We thus move on to the dual presentation.

Dual presentation

Simply flip a peripheral arc, making it travel around the other side of the figure, to obtain
the dual presentation of a given presentation.

Alternatively, we can simply surround the figure with a circle and then connect this circle
to a peripheral arc.

This planar trick, which involves using an additional circle, is in fact a change of
presentation. It is indeed a continuous deformation of the peripheral arc in question.

Let's illustrate this process using the example we chose at the beginning.



Notre exemple. .. mis en continuité avec un  donne la présentation
cercle qui I'entoure. .. duale.

Fig. 19

This change in presentation:-which involves all the intersections of the presentation if we
pass the deformed arc above or below the figure 4, is even more regular on the sphere
without holes because, in this case, the deformed arc travels along the hidden side of the
sphere and does not involve any intersections.

This change in presentation can be repeated several times.

On the sphere with a hole, our sheet of paper, we will then refer to presentations that are
dual to each other, depending on whether the peripheral area, the area bearing the hole in
the sphere when it has a hole, is part of one or the other half of the areas determined by our
first algorithmic process.

We thus solve the problem posed by Listing at the end of his habilitation thesis when he
discusses the different presentations of the same object laid flat. He had identified this

binary of areas, which he had labeled A and 6.

We will devote a more detailed study to this very important concept in our drawings later
on.

Now that these definitions have been clarified, let us return to the example of the
alternating case for which we are seeking the minimum span area and show how it is the
span area of the dual presentation of the one we had, moving from one presentation to the
other using the seemingly artificial process which may appear artificial, of the additional
peripheral circle, but which we will take as a practical and graphical definition of the
duality of the presentations.
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Fig. 20
The search for the minimum span area in alternate cases when they are in their alternate
presentation led us to change presentations by means of this still enigmatic movement, the

duality of presentations, which will be explained further on.

With the span of this presentation, we obtain the minimum span, V < P, of this object:

6

Fig. 21

since V = 3 and P = 4 in this case. This is indeed the same object, as the change in
presentation proves.

We also encounter the case of balanced presentations.
Balanced presentations
We say that a presentation is balanced when P = V.

In such cases, the two dual span areas can be said to be minimal.



a5 - Crumpled surfaces

Readers of Freud may recall what little Hans says about the crumpled giraffe. As Lacan
points out [2 Sém [V], if the large giraffe represents the mother, it is easier to sit on a small
giraffe drawn on a piece of paper, thus marking a key feature of this observation, since it is
then something other than the real giraffe. This is a matter of symbolism, which indicates
the register of nonsense for the little boy at that moment. Freud insists on this at one point in
his commentary when he states that Hans has not yet entered into analysis until he has
developed the register of fiction to which his nonsense belongs.

This dimension of fiction, this dimension of truth that we have deemed necessary to
establish in a calculation, is the subject of the first volume, devoted to logic!?, in this series
of introductory and review works on topology and mathematics in the Freudian field.

If we return to the origins of this discipline, the significance of dreams, we can highlight
how Freud's optical apparatus is necessary to free his readers from the prejudice, still
prevalent today, that the subject must be located within the mental structure. Lacan took
this idea further with his slightly more elaborate optical model. But from this point, the
analysis of a painting, and not just any painting, but Velazquez's Las Meninas, can be used
to bring into play the real lines of construction of linear perspective. They are not located in
space, if they can be reproduced at any time. It is therefore sufficient to move on to the
virtual objects of our topology, of which no material gives more than a local glimpse, in
order to grasp the location of the structure. Today, electronic animations can realize nodal
space insofar as it can be calculated by recursive processes; all that remains is to read them,
and for that we need a reader.

In Freud's desire to explain the rhetoric of dreams and their location, he moves towards the
necessity of this topology. We will not say, in a crude approximation, that dreams are
written on a crumpled sheet of paper, because they are as if knotted by the work of dreams,
desire; they are written on a libidinal substance, the fabric of which the text reveals to us.

2.2. Second stage: orientable character

It determines whether the span surface is orientable or non-orientable.



Deuxieme temps
La surface d'empan est non orientable.

Fig. 22

al - Purpose of this stage

We seek to decide whether the surface produced by the previous step is unilateral or
bilaterall®. Let us recall the definitions of the character of a topological surface, when taken
in its orientable (bilateral) or non-orientable (unilateral) aspect.

Bilaterally: means that the surface has two sides (like a disc) and can be oriented.

Unilateral: means that the surface has only one side (like a Mdbius strip) and cannot be
rotated.

A principle results from the second algorithmic step, which determines the character of the
span surface. We will use it to decide on the answer or to verify the result obtained after
using the algorithm.

a2 - Principle resulting from the second step

If there i1s at least one void with odd valence, the surface is unilateral. Otherwise, the
surface is bilateral, with all voids having even valence.

Definition of the valence of the zones
Each zone is bordered by a certain number of intersections; this number defines the valence
of the zone. We will call zones with valence one loops, zones with valence two meshes, and

zones with valence three triskels.

Note that the valence of an area also gives the number of arc segments adjacent to that area.



The use of this principle is immediate.

If all the voids have even valence, the surface is bilateral. We color it with two contrasting
patterns, one for each side.

Fig. 23

Otherwise, there is at least one void with odd valence, and the surface is unilateral. We
color it with hatching.

Fig. 24

The parity of the valence of the empty areas is the relevant feature retained by this principle
in determining whether or not the span surface is orientable.

Before deducing this principle, let us formulate the second step of our algorithm. a3
- Method used
To this end, we traverse the solid areas, marking them with distinct signs. They are

connected to each other by half-twists. This time, we move from one solid area to another
solid area using the half-twists.



To determine whether the span surface is bilateral or unilateral, we need a new binary
system; let's take (+, — ).

We use this new binary to mark the solid areas that make up the span surface.

Let's start by writing + in the first solid area:
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Fig. 25
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Let's do a half twist: let's write — in this second solid area.

From there, let's go through another half-twist and write + in this new solid area,

i
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Fig. 26
And so on, trying to use all the half-twists.

— Either we find two opposite signs in the same area.
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We may be forced to borrow the same filled area several times, led there by different half-
twists, and as a result, the same filled area may carry several signs. Furthermore, these
signs are not always identical within the same area; they may be opposite, in which case the
process can be interrupted.

— Either we have used all the half-twists at least once and found no pairs of opposite signs
in the same zone.

End of the algorithmic
process. a4 - Evaluation of
the result

Two cases may then arise.
First case

There is no contradiction. Each full zone bears only identical signs. This is the case in the
following example.

La surtace d'empan est orientable.



Fig. 28

In this case, on either side of each half-twist, the filled areas have different signs. The span
surface is bilateral, with a + side and a — side.

We will say that the object in question appears to be a non-node.

Second case

There is a contradiction. The path taken leads to writing + and — in the same filled area.

This is the case in the example we have chosen:

La surface d'empan est non orientable.

Fig. 29

In this case, all the filled areas are both + and —.

The surface area is unilateral; there is only one side. The object in
question is presented as a node.

Definition of a presentation as a non-knot

The object in question appears as a non-knot, or its presentation is a non-knot presentation
when the girdle surface is bilateral.

As we mentioned above, this characteristic cannot be determined with certainty until we
have gone through all the half-twists. We can only be sure that a surface is bilateral under
this condition.



Non-knot presentations have a bilaterally symmetrical surface; we color it with two
contrasting patterns, one for each side.

La surface d'empan est orientable.

Fig. 30
Definition of a presentation as a knot

The object in question is presented as a knot, or its presentation is a knot presentation when
the surface area is unilateral.

It may be that the non-orientable nature of the surface, revealed by this contradiction of
signs in the same area, does not appear as quickly as in our example. As long as the signs
marked in the same areas are homogeneous with each other, we cannot decide with
certainty on the nature of the surface until we have taken all the half-twists.

Objects, when presented as a node, have a unilateral span; we color it with hatching.

La surface d'empan est non orientable.



Fig. 31

In the case where the surface is unilateral, we can reorient it to make it bilateral. All that is
necessary is to make a cut. This cut can always be made connected and appear as a circle.
This will be the subject of our third step.

The second stage is now complete.

a5 - Demonstration of the principle deduced from the second step

From this second step of the algorithm, we deduce the more direct principle that we have
formulated in order to determine the bilateral or unilateral nature of a surface of span, and
thereby, in alternating cases, the node or non-node type of the presentation under
consideration.

Let us recall the principle we now wish to deduce. If there is

an odd-valency void, the surface is unilateral.

We have defined the valence of zones as the number of intersections or the number of arc
segments adjacent to that zone.

Considering only empty zones, we are concerned with the parity of their valence, as in our
example.

vides de
valence
paire
vides de <)
valence
impaire
Fig. 32

In fact, the parity of these numbers has an immediate consequence for our process, if we
note that it is sufficient to make a circular path around an empty area of odd valence,
writing alternately + or — at each half-twist until returning to the starting area.
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The last sign and the first sign, written in the same terminal and initial zone of the cycle, are
different since the path describes an odd number of half-twist passages. There is therefore a

contradiction between the signs at the height of a zone.

We therefore conclude that the surface area is unilateral if there is at least one odd valence
void. This is the principle we have stated.

Otherwise, if there are only even-valued voids, this fact never occurs, and the surface is
bilateral.

This second step of the algorithm determines the main feature of the classification of
surfaces presented in our work on intrinsic topological surfaces!”.

a6 - The case of alternating presentations
In the case of an alternating presentation, of an alternable object, both cases may occur.

If its minimum span area!® presents it as a non-knot, we will say that it is a non-knot, as
non-knots offer the purest presentation of the distributions of the number of crossings® .

If its minimum span area presents it as a knot, we will say that it is a knot in the sense that
it contains a knot in the knotting that characterizes this presentation. This knot will be
revealed by the cut necessary to reorient the surface. Our purpose, thereafter, will be to
calculate the characteristic number of this knotting and the number of knots it contains.

Balanced presentations



If the presentation is balanced?’, i.e., where P = V, we must consider the two minimum
span surfaces.

If one of the surfaces is bilateral, it is classified as a non-knot, and we can then refer to its
minimum span surface.

If both surfaces are bilateral, it is classified as a non-knot, and the two dual span surfaces
can be referred to interchangeably as minimal.

If both surfaces are unilateral, we will see later that they are characterized in the same way
by the cut.

Knots and non-knots

Thus, in the set of knots and chains, which consist of tangles of one or more loops of string,
we distinguish, among the alternating cases, knots and non-knots as two types of objects
closer to the truth of the knot in its distinction from entanglement.

In a chain, that is to say, an entanglement, one of the loops passes through the hole of
another loop. In a knot, no loop passes through the hole of another loop; when a loop enters
the hole of another loop, it comes out again [2 Sém XXII, lecture of May 13, 1975].

This distinction is central to the first part of our discussion; it is the most obvious and is
supported by our colorings and accompanying commentary. In the following two chapters,
we will show how the link between intertwining and two-color non-knots on the one hand,
and knots and monochrome surfaces on the other, is established through alternating
presentations.

The smallest non-knot is a chain; it is an entanglement.

Enlacement simple

Fig. 34

There are non-knots made of a single circle. These are clean non-knots. The smallest
known example is the knot that Jacques Lacan proposes to call the "Lacan knot" [2 Sém
XXIII, lecture of 02.17.76].




Fig. 35
a7 - Structure of the libido

Let us note that the surface characteristics of the fabric depend on the interlacing and
knotting of the edge, thus corresponding to the structure of the drive (trieb) described by
Freud, where the constancy of the drive (invariance of the fundamental group?! ) is
connected to the source via its edge (prevalence of bodily orifices, erogenousization
through language).

It was necessary to introduce this surface (quotient of the fundamental group? ), identified
with libido as explained by Lacan [E a 30, p. 846], to show this crucial link in the structure
of the Freudian drive. The knotting and intertwining fade away like the crumpling of fabric,
in the transition to the intrinsic, leaving a trace, in the form of these characteristics, of what
was once the knot and the chain.

The cut, which we now introduce in the case of monochrome fabrics, non-orientable
crumpled surfaces, traces the path that reveals the structure of the libido. Thus, the reader
can grasp Lacan's remark [2 Sem XIII] that these non-orientable surfaces, associated with
the gaze and the voice, are necessary in order to correctly situate desire [E a 21, p. 601].
Indeed, orientable cases, such as the sphere and the torus, are insufficient to account for this
articulation; Lacan associates them with the objects of pregenital, oral, and anal drives.

We identify this cut, which condenses the disorientation of the surface, with desire, as a
metonymy [E a' 21, p. 70]. This should be read at a specific moment in J. Lacan's
commentary, in the involution he practices between metonymy and metaphor. At the
moment when he comments on Freud's explanations of double inscription, in his attempt in
1915 to write his metapsychology [1 ¢].

The interpretation of the dream therefore consists in determining the cut, thanks to
associative materials, i.e., the main intrinsic characteristic of this unfindable surface fiction;
Freud calls it libido, which is the substance of jouissance that is not there.



This approach will prove to be more rigorous, if not exact, with the number and invariance
of the cuts, when there are several of them due to the number of circles.

2.3. Third step: the cut

This determines the path of a cut that reorients the span surface.

Troisiéme temps.
La coupure qui oriente la surface.

Fig. 36
al - Purpose of this step

In the case where the surface is unilateral, we can reorient it, making it bilateral. It is
necessary and sufficient to make a cut®:

This cut can always be circular; if it has several components, they can be made connected.
a2 - Process implemented

To determine the cut, a new color binary is required. Let's take two contrasting frames, light
gray and dark gray:

code 1

Using this color binary, we color the portions of the arcs of each circle alternately,
following the successive paths of these circles and applying color to the side of



non-orientable surface produced in the first two steps, as in our example reproduced here.

Fig. 37

We begin by coloring a portion of the arc with one of the two colors, chosen at random.

~

=~

Fig. 38

It should be noted that, in order to remain on the side of the span surface, it is necessary to
change sides at each intersection. It is at this point that we change arc segment and,
consequently, color.



>

We continue coloring until each arc segment has a color for the circle that we are following
in this way.

Fig. 39

Fig. 40

In the case of a clean knot, with a single circle, the determination of the cut is completed at
the end of the path.

When dealing with a chain, the procedure for coloring the arc segments of the same circle
returns to its starting point without having colored the entire surface. We must repeat this as
many times as necessary depending on the number of circles, choosing to start with any arc
segment and one of the two colors for each circle.

Difference between one and several circles



When dealing with a chain, the algorithm experiences an initial halt and freezes. The
procedure for coloring the portions of arcs of the same circle returns to its starting point
without having colored the entire surface.

We must restart this period, choosing to begin with any arc portion and one of the two
colors:

Fig. 41

The procedure continues along the second component until it has been covered in its
entirety.

Fig. 42

The procedure stops again, so we move on to another circle, arbitrarily choosing a new arc
segment and one of the two colors.



Fig. 43

We continue in this way until we reach the last circle.

Fig. 44

The coloring procedure is now complete. End

of the algorithmic process.

a3 - Evaluation of the result

All that remains is to interpret it by drawing the cut.

Based on this coloring, some solids are monochromatic, because all their arc portions are
the same color, while others are two-colored.



plein bicolore @ plein unicolore

Fig. 45

There are two types of areas. Monochrome areas can be colored with the color of the arc
segments that border them. Two-color areas are defined by intersections where two arc
segments of different colors meet within the same area. We will refer to these intersections
as cut intersections.

Fig. 46

We can sketch the cut by separating the two colors at each of these intersections with a
fragment of edge that consists of solid areas.

And it is by joining these edge fragments that we obtain the components of the cut.
The cut passes through each of the two-color solid areas so as to separate the two colors. In

fact, this is equivalent to saying that the cut will pass around the empty area or areas where
all the arc segments are the same color.



La coupure qui oriente la surface.

Fig. 47

The cut, running through the two-color fills, joins the cross cuts. The third step
is complete.

Coloring and orientations

This final coloring strictly corresponds to the orientation of the chain and knot loops 24,
according to the following principle of correspondence.

Td;fld;fl ld;fldefl

The orientation of a string element is indicated by a color applied to one side of that string
element.

code 2

Given this chosen correspondence, an orientation of the loops that form the edge of the
fabric can be associated with a coloring of the fabric.



Fig. 48

Another way of noting the adopted code can be extended to the drawings, where the
colored areas of a given color have their borders oriented in a corresponding manner.

code 3

Knot part and non-knot part of a presentation

In a colorful presentation, we will discuss the node part (cut part) for the compound of solid
areas crossed by the cut and intersections through which the cut passes. This part may have
several components.

We will refer to the non-node part (non-cut part) for the compound of monochrome solids
and crossings through which the cut does not pass. It may also have several components.

These parts are isolated in the drawings following the outline of a subgraph of Terrasson's
graph?:



Partie nouage et partie non-nouage.
Fig. 49

The sources from which these different parts originate 26 and their mode of composition 27
are the subject of specific studies.

With the definition of the node part and the non-node part of a colored presentation, the
algorithm is complete.

a4 - The case of chains made up of several circles

In the case of a chain made up of several circles, we have seen that the procedure is
interrupted and that we must resume it arbitrarily by choosing a new arc segment and a
color. A different choice can be made between the two colors for the arc segment chosen at
this point in the coloring process. These different colorings do not produce the same result:
there are therefore several possible breaks in the case of a chain with several circles.

Here is an example based on the general case:



Une coupure par Une coupure par
sept demi-torsions. onze demi-torsions.

Fig. 50

In the case of chains, there are therefore several cuts. If the number of circles is denoted by
r, the number of colorings is (27) and the number of cuts is (2). These different cuts have
the same parity. The theory of intrinsic topological surfaces(22) assures us of this fact, since
it is always the same non-orientable surface and is equivalent to a projective plane (odd
cases) or a Klein bottle (even cases) to which a certain number of tori are attached
according to the main theorem of intrinsic surface theory.

a5 - The four interpretations of the dream of "'the beautiful butcher"”

Lacan gives an example of dream interpretation [E a 21, pp. 620 to 627], saying that he
does not do this often but that on this occasion he has elevated it to a paradigm. It is the
dream of "the beautiful spiritual butcher" transcribed by Freud in his major work [1 a].

Freud's initial interpretation is quite surprising, given that this is a dream that the woman
brings to the psychoanalyst, contradicting his theory of dreams, according to which a dream
is the fulfillment of a desire. Freud presents it this way, and only Freud could respond to the
beautiful hysteric by saying that she has the desire to have an unsatisfied desire.

He then completes his commentary with the first lines of his theory of identification,
specifically hysterical identification, thus adding a second interpretation, which he does not
share with the butcher's wife. Her desire is to identify with her hysterical friend who
appears in the associations because, although thin, she pleases her husband, who prefers fat
women.

Lacan extends this interpretation with a third one that follows on from the second,
emphasizing that the dreamer also identifies with her husband in this dream, because she
wants to answer the question that all hysterical women ask when they play the role of men:
how can a man desire what he does not love?



Finally, Lacan adds that the lady identifies with the salmon when he evokes the gauze net
that separates the slices of smoked fish, which he likens to the veil masking the phallus that
we have just discovered in the frescoes depicting the demon of modesty on the walls of the
Villa of the Mysteries in Pompeii. That makes four.

How, then, can we get closer to the fact that a dream is susceptible to four different
interpretations, each of which is equally accurate and coordinated with the others, if not by
grasping these cuts that condense the disorientation of the surface span of a chain made up

of several rings?

Four breaks are worth three rings according to our algorithm and the little calculation we
have just indicated.

The cut is what the interpretation of the knot must trace, which does not have to be
exhaustive, passing through all areas; it suffices to summarize the disorientation by
reorienting the entire surface, giving meaning to the areas of the non-knot part that it does

not cross.

We will immediately return to the result, concerning the number of cuts, in the following
chapter, in order to interpret the variation in the number of cuts in terms of intertwining.

a6 - The case of alternating presentations
In the case of the minimum span surface of an alternating presentation, we are led to
distinguish two families of knots as opposed to the isolated non-knots in the second step of

our algorithm. These two families are defined according to the parity of the cut.

The cut passes through a certain number of half-twists. We will call this number the cut
number and denote it by k.

Parity of the cut
We will refer to the parity of the cut as the even or odd nature of the number of the cut. If
the cut is odd, the alternate node is from the same family as the clover.

If the cut is even, the alternating node is from the same family as the Listing node.
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Tréfle Listing

Fig. 51

The non-nodes already encountered have a zero cut, the same parity as the listings2.
Balanced presentations

When balanced, the uniqueness of the family to which the node belongs, when it is
alternable and in its alternate presentation, is also ensured. If the two dual empan surfaces

are unilateral, it is easy to show that, in balanced cases, the cut of one and the cut of the
other will be of the same parity.

@5

Les deux présentations duales
I'une de l'autre d'un cas équilibré.

Fig. 52

Indeed, if we revisit the basic formula for the knot that we established following our first
step3:

P+V=C+2



And remember, as we defined at the same time, that balanced nodes are such that P = V.
Under these conditions, this formula becomes:
2P=C+2o0r2V=C+2

Thus, it is easy to see that, in the specific case of balanced nodes, the number of crossings
is even:

C=2(V-1)

The node part and the non-node part therefore have the same parity, since their sum is an
even number.

This clarification ensures the definition of the parity of the cut of balanced nodes and
chains. These nodes and chains clearly belong to the same family, without any possible
ambiguity.

3. Summary

We have compiled a table of the vocabulary adopted, based on the distinction made in
mathematics between nodes made up of a single circle and chains made up of several
circles.

We replace this criterion relating to the uniqueness or multiplicity of circles with another
distinctive feature relating to the necessity of cutting, depending on whether this necessity
applies or not.

We call the alternating cases where cutting is necessary "knots," meaning "there is a knot."
We refer to proper knots in the case of a single circle, and improper knots when there are
several circles.

We call non-knots the alternating cases where the minimum span area is bicolorable, i.c.,
does not require cutting.

knots (one) chains (several circles)
Not of No of
Cut (knots) Erlll:)n- Cut (knots) cut (non-
knots) nodes)
clean nodes improper knots
pair odd nodes L pair odd Entangleme

Listing |Clover |gcan Listing |Clover nts



Terminology for chains and alternating knots of 1, 2, and 3 rounds in their minimal
alternating presentation.

Our terminology is particularly relevant in alternating cases consisting of one, two, or three
circles. Below, we provide the reasons behind this designation of objects, and we will
discuss the generalization to a larger number of circles.

In non-alternating cases, we adopt the distinction formulated by the phrase "presentation as
a node" where cutting is necessary, and "presentation as a non-node" where cutting is not
necessary, when there is a coloring that does not require cutting.

The main consequence of these three stages of the algorithm is that each proper node and
each alternable chain belongs to a family with a unique name, which we will use in our
description of the multiplicity of nodes and alternable chains.

This is because:

— the parity of the cut is fixed for chains made of several rings;

— the parity of the cut is fixed for clean knots and chains with a minimum span area and a
single span area (unbalanced knots and chains: P > V);

— the parity of the cut is fixed for proper nodes and balanced chains (P = V) regardless of
the minimum span area chosen from its two dual span areas.

Proper and improper knots are divided into two families known as Trefle and Listing.

Non-knots are divided, according to the uniqueness or multiplicity of the number of loops,
into Lacan knots and Enlacements.

The existence of improper knots among the chains commonly referred to as such deserves
some clarification, which we will now address by considering the question of variation in
the cut in cases involving several loops.

4. Exercises

el - Coloring

Find, in three steps and with few movements, a cut in a knot or chain, when necessary.

For example, the three steps in the case of knot 6>:



la présentation alternée, la surface d'empan, et sa coupure.

Fig. a

Perform the same exercise for each of the following nodes and chains:

D

9>
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Fig. b Fig.c Fig. d

&2

Pay attention to figures b and c. Refer to the following exercise if you need further
explanation.

e2 - Passing the cut through the folds
1. Transform the drawing of a given span surface in this exercise, creating folds at the height

of each half-twist 3L, In this exercise, you can check how the cut passes through a fold and
how the colors are distributed at the height of the intersections.



Fig. e
2. See how the cut passes through the folds and check that it can pass through twice in

order to join the two components of the cut of knot 940, whose coloring you determined in
the previous exercise, into a single circle,

&

Fig. f



Chapter 111
The knot is an accomplishment of cutting

When you have followed a narrow path and arrive at a high point from which you can see
vast vistas in various directions, you stop and wonder which way to turn first. That is how
we feel after having constructed the algorithm that was missing for chains involving more
than one loop of string. We find ourselves in the full light of a sudden discovery.

Of course, our procedures do not generalize Dehn's lemma, since our algorithm does not
directly answer the question of whether the knot or chain is trivial, i.e., made up of
unknotted and scattered loops. We will subsequently deduce a graphical process that will
assure us of the existence of a minimum characteristic number, but whose value remains
undecided.

The first indication provided by this practice resolves the difficulty that can be
encountered when attempting to orient oneself in the flat plan of the object. It indicates
that, regardless of the layout of the flat diagram in the plan, the aim is to distinguish
between different parts, rather than trying to orient oneself in terms of left and right, top
and bottom, or in relation to some predetermined reference point, as in analytical
geometry. The presentation of the object is not, however, a chaos of discordant lines
resulting from a randomly drawn fantasy. We will specify what the elements are and how
they are assembled in the following chapters(X-thanks to the fact that a cut is made there.

We would like to clarify here what we mean by this break.

One thing should be noted about this distinction between parts for a given presentation and
coloring. In chains made up of several circles, these parts become entangled according to
the variation in coloring that can be achieved with them. We observe that the variation
occurs according to a system of cutting, which contrasts with its completion, relating more
to the non-knot contained in the chain than to its knot.

We will begin by accounting for the variation of the cut by means of a count, then the
movement of the cut by refining this calculation depending on the elementary movements
of the theory. The highlighting of non-knots, characterized by the absence of cuts, will
reveal the relevant register of what we call its completion. This completion will appear
with certainty through arithmetic formulas. In our next chapter, we will attempt to
precipitate it in a legible manner in the drawings.

1. Passage of the cut in a fold

We have one additional clarification to make regarding the previous chapter. The layout of
the cut in the flat diagrams (diagrams) may cause difficulty for the reader when



transition to surface twists. There is a color distribution here that deserves comment.

Fig. 1

To do this, we need to refer back to what we showed in the previous volume devoted to
surfaces?. There, we explained that the drawing of a fabric twist is the outline of a fabric
ribbon fold. The fold can be restored at the height of each twist. It is sufficient to perform
this transformation, which corresponds to a calculation, in order to verify the relevance of
our colorings.

Let us consider a crossing of rope elements, provided with a span surface. We add a fold
line and show the edge line, which passes through the fold below the ribbon, as dotted
lines, as we explained in our second booklet.

/ ;
Fd

Fig.2

In the case of an adjustable ribbon, there is a change in the colors of the visible side when
passing through a fold.




Fig.3

In the case of a ribbon with a non-orientable surface, reoriented by the cut, we can check
the path of the cut:

Fig. 4

and, in the drawing with a fold, explain much better the distribution of colors in the twist,
since they are always back-to-back in a bilateral surface.

It is clear that we can adopt the same principle for cutting as we do for flattening nodes,
namely that no more than two line consistencies should ever intersect at the same point.

Fig. 5

This principle is not respected in the presentation sketch in terms of torsion for reasons of
convenience, since it will mainly be a question of counting the intersections through which
the cut passes.

2. Variation of the cut

In the case of chains made up of several circles, repeating the process of our third
algorithmic step gives rise to several possibilities. As a result, there are several different
cuts, the number k of which, attached to each one, may vary. These are the different
numbers of intersections through which these cuts pass. The parity of these different
numbers of cuts is constant for the same presentation. We will distinguish this



variation in the cut for the same presentation from the movement of the cut through
changes in presentation.

Our example, consisting of three circles, has four cuts that reorient the surface. These

numbers can be written in a distribution table:

7
11 11
11

This layout corresponds to the arrangement of the following drawings:

Fig. 6



However, we must bear in mind that the crossings may not be alternating, as in the case
we are considering here.

If we formulate this fact, noting as in our preliminary account, using two opposite signs,
plus (+1) and minus (—1), the non-alternating crossings between them.

Fig. 7

The numbers attached to each cut have been modified. In our example, the cut to which
the number 7 is attached passes through four intersections with an alternation (+) that is
different from the other three (). In this same example, the cuts passing through 11
intersections curiously pass through four intersections with an alternation noted (+) that is
different from the other seven (-). These numbers characteristic of the cuts are therefore
reduced and oriented.

We thus obtain a new distribution, still corresponding to the layout of the drawings.



That is:

We can see then, knowing that the number of interlockings between the circles in a chain,
well known in mathematics, is the first, simplest figure that lends itself to calculation, that
the difference between the numbers corresponding to these cuts coincides with the number
of interlockings of each circle with all the other circles?.

This is the problem we want to study here in order to isolate it. For greater precision, we
need to define the linking number between the loops. This number depends on the
orientation of the direction of travel along the string loops. This orientation of the loops
produces an orientation of the crossings. However, at the same time, it will become
necessary to have another orientation of the objects. Therefore, we will simultaneously
provide definitions for these two modes of intersection orientation.

3. Another orientation in the knots and chains

Since Tait's work, as in the definition of writhe, it has been common to note the crossings
of oriented loop elements using two signs, +1 and -1.

This defines the sign of each crossing (crossing sign), which we will call the characteristic
(s1) of each crossing, given the orientation of the circles, denoted by i.

There is another orientation of crossings in an object presentation, this time taking into
account the distinction between solids and voids, which is independent of the orientation
of the circles. Solids and voids are defined by the first step of the node reading algorithm
we have proposed. To a presentation (diagram) of an object, we match the choice of solids
and voids that assigns the value of



empty to the outer area (infinite area of the plane), i.e., the area around the presentation.
al - Twisting

Let us assign two signs, +1 and —1, to the two types of crossings that are not oriented by
the direction of travel on the string circles, where only the difference between solids and
voids is decided.

/7 N\
/ \

+1

These two crossings, oriented by the solids and voids, can no longer be superimposed in
the plane. We will call this incidence sign +1 or —1 the torsion (ip) of each crossing?.

This distinction between the orientation of intersections by torsion and the orientation of
intersections by characteristic has been little developed by mathematicians until recently?.

Calculation is less useful due to the global nature of this orientation by torsion, whereas
orientation by characteristic can be localized at the height of each round. This question
also concerns representation and calculation, and supports our approach with a notation
specific to the knot, accurate in its drawing and rigorous in its articulation in discourse,
which cannot ignore standard algebraic notation.

a2 - Four types of crossings
Thus, each intersection can receive a double orientation in a presentation of an object

where solids and voids have been distinguished, when it is oriented with respect to the
circles. There are therefore four types of intersections.



/
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Aesthetic principle
The surface, which is used to define the twist, thus arranged at the height of a crossing,
allows us to show the coloring produced by our algorithm as suitable for accounting for

the orientation of the circles by colors arranged on the side of each string element.

This correspondence between the orientation of the circles and the coloring of the areas
will be the subject of a separate short study®.

We index these four types of intersections with a pair (t, s), where the numbers t and s are
taken from the pair {+1, —1}. The first notes the twist, the second the characteristic.

Let us also denote p, q, b, and d as the respective numbers of these four types of crossings (+1,
+1), (+1,-1), (-1, +1), and (-1, —1) in an oriented or colored presentation. a3

- Three remarkable numbers

Given this double orientation, for a presentation p, where solids and voids are
distinguished, and orientation in terms of circles or coloring i, let us set:

— the number of crossings oriented by the twist:
p=ptq-— b-d

where p indicates the choice of presentation.



— the number of crossings oriented by their characteristic, i.e., the writhe:

vi=p-qt+b-d

where 7 indicates the choice of orientation of the circles or the coloring for the given presentation.
If xi and vi are two circles in the presentation oriented by i, we refer to the set of mutual

crossings of xi and vi, which is written as crois (xi, vi), and we define the /inking number of
these two circles as

enl (X;, Y;) =172 2 5; (X)

X € crois (Xi, Yi)

obtained as half the sum of the characteristics of their mutual crossings, where ir(X) is the
characteristic of the crossing x.

— We thus define the third remarkable number in a presentation, the chain number =i, as
the sum of the linking numbers (enl) of round to round oriented by the characteristic.

Let p; be the set of distinct pairs of circles {xi, vi} in the presentation oriented by i, then:

2

Ei:{Xi,Y‘l]Effi

enl (X;, )
Other definitions

In a presentation, we will call the mutual crossings of two circles improper crossings and
the crossings of a circle with itself proper crossings.

Thus, clean knots made up of a single loop only have clean crossings, and there is no
question of the number of entanglements. We say that their chain number si is zero.

There are chains that only have improper crossings.

In the most general case of a chain, both proper and improper crossings may be present.



The chain number ; is in fact half the sum of the characteristics of the improper crossings
of the entire colored presentation.

We distinguish this from the respective entanglement numbers enl (xi, vi) of the pairs of
circles, which give a more detailed overview of the entanglement state of the object.

In this regard, we will have to consider two types of distributions:

For a colored presentation, we will have to consider the distribution of the respective
entanglement numbers of the pairs of circles.

For a non-colored presentation, we will also discuss the distribution of the chain numbers
zi obtained during each of its colorings.

a4 - Calculating our example

Let's return to the result of the Freudian numbering system we started with at the
beginning of Chapter II. It reflects the alternation and non-alternation of the string
passages in the crossings. This is how we obtained it in the general example already

chosen in the presentation p as a numbering system for this fact.

We can now give it meaning.

Fig. 8

The signs in the first figure correspond to the twist sign of each crossing in the second
figure. These signs are defined when a surface area of the object is determined, and they
take on meaning as soon as the first step of the algorithm is completed. It was still
necessary to isolate, in the flattening, the opposition of the two torsions, noted as positive
or negative, in the pairs of crossings equipped with this surface. Thus weighted by the
solids and voids, the crossings are no longer all superimposable through the displacements
on the plane. There are then two types of crossings.



Let's show how to obtain the quantifiable effect on this last figure from the other
definitions we have just encountered. We retain the general example already chosen in the
presentation p, now oriented thanks to the colorings i.

Fig.9

Refer to the table that gives the values of the torsion and characteristic of the four types of
crossings and take into account the proper or improper nature of each of them to determine
the number of chains.

o = —5, because there are seven positive twist crossings and twelve negative twist
crossings (+7 — 12 = -5).

vi = —7, because among the positive twist crossings, there are three positive characteristic
crossings where the cut does not pass and four negative characteristic crossings where the
cut passes on the one hand, then among the negative twist crossings, there are nine
crossings with negative characteristics where the cut does not pass and three crossings
with positive characteristics where the cut does pass (+3 -4 -9 +3 =-7).

i = —3, because there are fourteen improper crossings and five proper crossings.

Three clean crossings are positive torsion in this case and two are negative torsion. Among
the first three, one has positive characteristics—the cutoff does not pass through it—and
two have negative characteristics—the cutoff passes through them. Among the other two,
there is one crossing of each type.

We modify the previous calculation by removing these respective values (+2 —2 — 8 +2
=—06) since we only calculate this indicator on improper crossings.

The sum of the intertwining is by definition equal to half of this sum (1/2 (+2 -2 - 8 + 2)
=-3).



We can detail the distribution of the numbers of mutual interlacings of pairs of circles,
naming the three circles with three distinct letters S, T, and J.

Fig. 10

We count the number of improper crossings of each type common to each pair of circles.
enl (S, T)=12(H*2-2-2+0)=-1

enl(T,H)=12(+0-0-4+2)=-1

enl(J,S)=12(+0-0-2+0)=-1

In this calculation, the crossings are positive and negative due to the orientation produced
by the characteristic.

In our example, we can verify that the sum of these three counts does indeed give the
result obtained above, 5 = -3, but we note that it is easier to find it directly by calculating
the half-sum of the characteristics of the improper crossovers.

Armed with these definitions, in order to address the variation in the cut, let us now return
to a remark concerning the difference between proper and improper crossings in the effect
produced, at the level of these crossings, by a change in orientation or coloring.

4. On the variation of the cut

We have just clarified the distinction between proper and improper crossings. This nuance
leads us to formulate a very practical principle in



searching for the different cuts in a given presentation, when we already know one of
them.

al - Difference between proper and improper crossings

This principle depends on the different reactions of proper and improper crossovers to
variation in the cutoff. Let's start by discussing this.

Improper crossings

At an improper crossing, if we change the orientation of one of the circles, the
characteristic changes, and consequently the type of crossing also changes.

In fact, characteristic signs form, by definition, a simple pair, and its two terms differ when
the direction of only one of the string elements constituting the intersection in question is
changed. This change does not affect the twist.

Thus, in the case of an improper cross, when a single strand changes direction, the
characteristic changes and, as a result, the type of cross is modified while retaining the
same twist sign.

If it was a knotting type, with a cut, it becomes a non-knotting type without a cut, and two
cases can Occur.

y |

(=1,+1) & (=1,-1) (+1,=1) & (+1, +1)

Conversely, if it was a non-knotting type without cutting, it becomes a knotting type with
cutting. To verify this, simply consider the same pairs of crossings given as examples
retroactively.

Clean crossings

Clean crossings do not change their characteristics or type of crossing when the orientation
of the round in question changes.

The two string elements of a clean cross participate in the same round. When the
orientation of the round in question changes, the two string elements change direction



simultaneously. There is therefore a double change of direction at this clean cross, which
amounts to no change at all.

As we have just seen, due to the existence of a single pair of opposing characteristic signs
whose terms are exchanged when the orientation of a single string element changes, a
double change of direction at the level of a crossing produces an involution and does not
modify its characteristic.

Consequently, at a proper crossing, if we change the orientation of the loop, the
characteristic does not change, and since this change does not affect the twist, it follows

that the type of crossing does not change.

If it was a non-knotting type, without a break, it remains so.

-

(-1,-1) (1,41

If it was a knot type, with a cut, it remains so.

ve -

(-1, +1) (-1, +1)

We can therefore deduce a principle. a2
- Principle

To obtain another cut from a given cut by changing the color or orientation of a circle,
only its improper intersections with other circles change type.

This principle also states that the variation in the cut follows the change in type of the
improper intersections.

Let us give an example of the use of this principle in the general case we have chosen.



—
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Fig. 11

If we follow the path of the circle that changes orientation, marked in bold, where the cut
passed through the improper intersections in which it participates, it no longer passes
through them, and it passes through those where it did not pass before.

a3 - Topological variation of the cut

We can show more precisely what happens when a circle changes orientation, when the
cut varies. According to our third algorithmic step, the variation in the cut is produced by a

different choice of colors distributed along a circle in the chain.

Let's take the coloring from our example, which corresponds to a i cut.

Fig. 12

The change in coloring of a circle can be explained by a k12 cut along that circle. In this
case, we change the orientation of a circle, choosing a different circle



from the previous example, still marked in bold, and accompanied along its entire length
by the cut k12.

Fig. 13

We connect this cut k12 with the initial cut 1, to obtain the second cut i2p.

Fig. 14
We justify this process solely on the basis that it is consistent with the coloringsZ.
This gives us an explanation, in the sense of an unfolding, of the variation in the cut, and

we can consider calculating the difference between these two numbers of the cut in order
to quantify this intermediate cut k12.



However, we will not pursue this avenue for the moment, and we will address a question of
paramount importance in our discussion.

5. On the completion of the cut

With these conventions, we can write a definition and a main theorem. al - Main

results

For a presentation of a node or a chain oriented by torsion, whose circles are unoriented,
we will call the average of the numbers in the cut the number 5, obtained for any
orientation i of the circles in this presentation:

Sp— 12 (cp_ vi) ]

Main result

i — For a given presentation p of a knot or link and for any orientation i of this
presentation, we can write the following relation:

ep—28p = vi—2zi= N

ii — The number s, is oriented by the twist and is independent of the colorings
(orientations) of the circles that form the knot or chain.

According to the definition of sp, the relationship that forms the first part of this statement
is an easy proposition to establish. We must demonstrate the independence of sz, with

respect to coloring (orientation) 7 in order to establish the second part of this main result.

To demonstrate this, we will use the definition of the number h that appears in our formal
expression and its independence from orientation 7 and presentation p.

Indeed, i and s; are invariants of regular isotopies, Reidemeister moves 8M2 and T3.
Due to the definition of i, by the characteristics of the set of all crossings of the
presentation, and of i, by the characteristics of the improper crossings alone, the number

is well defined as the sum of the characteristics of the proper crossings alone.

We will call this number nUa proper twist, and we can note the following additional
result.

Proper twist



1. The clean twist N = vi—2si1s an invariant of knot or chain presentations, for regular
isotopies performed on the sphere.

This means that n is independent of the presentation p, as long as we do not create or
remove loops; it only changes as a result of regular isotopies composed of M2 and T3.

But in order to prove our main result, we use another partial result that follows from what
we have already observed.

2. The proper twist  is independent of the colorings of the circles that form the knot or
chain.

As we showed above with regard to proper crossings, these do not change their
characteristics when we change the coloring.

Thus, thanks to this last lemma, we know that the number h is independent of the coloring.
— since the number ¢, is itself independent of the coloring i, by definition it depends only
on the torsion — we can conclude that the number 5, = 1/2 (¢p — N) 1s indeed independent
of the coloring and depends only on the torsion, which is what we needed to prove.

a2 - Quantification of our example
In order to practice reading this main result in the drawings, let's return to our example.
The values of vi and s; are calculated in the figures, using their definition, such as the value

of ¢, = —5, which does not depend on the change in coloring but only on the torsion, since
the number of crossings does not change between these drawings.

It turns out that N = i —2s5i = —1, it does not vary in the four cases as stated in our second

lemma, and in fact its value is justified here because there are three crossings with positive
torsion and two crossings with negative torsion in this case.

The average of the numbers of cuts 5, = 1/2 (;p — N) = —2, by definition, is indeed
independent of the colorings i, and our relation is verified for the four colorings.



vu=-*?,£0=-3

‘.‘5=+1,23=+1 VJ=+TIEJ=+1

'U'T=+1,ET=+1

Fig. 15

But it is more interesting to justify the name "average of the numbers of the cut" given to
Xp.

We will comment on this fourth figure after returning to the variations in the cut, i.e., the
problem we started with.

a3 - The number of the cut
We had drawn up the distribution of the numbers of crossings through which the cut

passes, taking into account the non-alternation of the crossings. This non-alternation is now
expressed



now in terms of opposite twists, and our example has a greater number of negative twists.
Our distribution oriented by the twist becomes:

In the case of the coloring shown on the left, ki, = —3, the cut passes through eleven
crossings, four of which have opposite twists to the other seven. We propose to define the
number of the cut ki, by the difference between these two numbers:

kip=4—-7=-3

This definition of the number of cuts based on the number of twists gives the expected
result in the other three cases.

Thus, the kip cut number is the sum of the values of the twists oriented by the twist through
which the cut passes.

In other words, to summarize this definition, we can say that the cut number is:
Kip=q—Db
where q and b are the respective numbers of (+1, —1) and (-1, +1) type crossings.

This number is related to two of the indicators defined above. The kip break number
verifies the relationship:

kip = 1/2 (cp_ Vi)

This relationship can be easily verified by a simple calculation, given the arrangement of
the signs of the respective numbers of the four types of crossings in these two indicators:

p=ptq-b-d

vi=p—q+b-d

Thus: (p—vi=2q—-2b=2(q—b) =2 1p

q and b correspond to the crossings through which the cut passes, provided here with their

torsion sign, hence the proposed relationship. We will call this expression (q — b) the
knotting part; it is the number of the cut.



The non-knotting part is also characterized by a number resulting from an expression: —
kxip=p — d.

This is the opposite of the dual cut number?. In the dual presentation, the twist is thus
reversed; for example, the number of crossings oriented by the twist in the dual
presentation with its span surface is ¢*p - ¢p* = — ¢p, and the non-knotting part verifies the
same properties as the number of cuts in the dual situation:

k*ip = 1/2 (c*p_ v*i) =1/2 (_ cp— Vi)

The characteristic does not change in the dual situation and therefore the twist does not
change, giving the proposed expression:

-2 k*ip= cp T vi= 2 (p - d)
a4 - Arithmetic variation of the cut
This number of cuts depends on the twist and the colorings.

For an orientation i of a given presentation of a node or chain, our main theorem ensures
that the cut number ;p satisfies the following relation:

kip= 1/2 (cp— vi) = 5p— =i

We therefore have the following result, which solves our
problem. The number of cuts ki, verifies the relationship:
kip = Tp— i

Thus, for a given presentation, the variation in the cut according to the colorings follows
the variation in the value of 5; in terms of its number.

This consequence can be immediately deduced from our main corollary since sp is
independent of coloring i.

The distribution of cut numbers is therefore a transform of the distribution of string
numbers si. The transformation between these distributions is given by the formula kip = 5,
—5i, which consists of inverting their signs and translating them by the length .

In our example where 5, = -2, we can now interpret the distribution of the cut values.



[-3 -3]=¢2)- [+1_3+1]

3 +1
ki =2 - &

These results shed light on the fact that, when discussing the number 5,, we were referring
to the expression of the average of the cut numbers!?, which is indeed what it is, as we will
now demonstrate.

a5 - First interpretation of sp

We interpret 5, as the average number of cuts varying across different colorings.

For a chain of r components (rounds), there are n = 2'possible colorings.

For the n colorings of a presentation of a node or chain, the expression for the average
number of cuts is written as:

n
1/n E Kip

Let's calculate the value of this expression, using our corollary which states that ki = s — =i.
Thus, since sp is independent of the colorings i:

n n n
I/n E kip=1/n _E,l (Ep-X) =1/ E)-1/n E ¥,

We then use a new proposition.

In any object, the sum of the chain numbers distributed among the colorings is zero.



2 5=0
1=1

This last relationship is easy to establish based on the definition given above for s,
depending on the characteristics s, and knowing that changing the orientation of a circle
reverses the characteristic sign of each of the improper intersections of that circle with the
other circles.

Thus, each characteristic appears an even number of times, with opposite signs in each
pair, which ensures their mutual cancellation.

Thanks to this proposition, we can deduce that:

n
Ih 2 kp=1/ (%=X,

1=1

This is what we wanted to verify for our interpretation.

The average of the numbers in the cut 5, can still be interpreted through the intertwining
and movements of the theory, which ensures the identity of objects through changes in
presentation; we will study this in the following chapters, but to demonstrate and calculate
it, we will first need to clarify a few definitions.

a6 - On the completion of the cut

We have thus solved, in arithmetic, the problem of the variation of the cut, and we can
then distinguish it from what we call its accomplishment.

What we call, in our title, the completion of the cut cannot be reduced to the variation in the
number of cuts, for the reason that the variation in the number of cuts is the variation in the
numbers of chains, or the distribution of interlockings, and, as we show below, it is the
non-knot contained in the chain in the cases of one, two, and three circles. This is our first
point.

Secondly, if we emphasize in our main relation:

cp —2%p — vi 2%



Since each of its members is oriented respectively by torsion and by characteristic, we will
say that the number of the cut is accomplished as an articulation between these two
orientations.

This articulation is written by the condensed formula:
kip = 1/2 (cp_ Vi) = Xp—

The kip number depends on both orientations, unlike the proper twist n, which is
independent of both orientations.

Thus, the arithmetic and formal accomplishment of the cut is this articulation where, to put
it another way, there is a kind of oscillation carried by the cut, which draws on both of our
two orientations and creates a pulsation between the two members of our main
relationship.

If we associate the flattening of an object before performing our algorithm, the indexs

with the twisting of the presentation p of the fabric and the letter a with the coloring i, that

is, with a possible orientation of the circles of the object, that is, with the characteristic of

this

fabric. In this comparison, object a would be more like the color of emptiness, our main relationship
proposes a writing homologous to that of the structure of fantasy, whose expression "

($ 0 a) " was coined by Lacan.

Our written expression in knot arithmetic articulates the relationship of the subject barred
by the cut produced by coloring to this object called petit a, the cause of its desire. The
number of the cut comes as the lack, noted -, oscillating between the two terms of this

relationship, our two orientations, and the cut to be accomplished in our presentations of
knots!L,

On the other hand, in our drawings, the accomplishment of the cut appears in its own
register, which is topological. Indeed, the topological interpretation of the number of the kip
cut is given thanks to our algorithm. The topological accomplishment of the cut, the knot,
occurs in nodal space, for one, two, and three cireles,

We must therefore distinguish between the completion of the cut in the node space and its
notation in the formulas, even though this notation remains the best indication of this
completion.

The most exciting question remains that of assessing the link between Lacan's categories
once this presence has been observed in the field of the knot, a structure proven in the
Freudian field. We return to this in our Appendices (chapter II) in relation to the
calculation of knot polynomials.

We will then have to distinguish this accomplishment from the break in the movement of
the break that accounts for the interpretation of s, through the



entanglements and movements of the theory, in the manner of Reidemeister's, in order to
condense our discussion of the knot.

From a technical point of view, the constancy of the cut reveals the absence of
entanglement, i.e., a type of original chains characteristic of the knot that escape the
simple calculation of the number of entanglements, which remains blind to the knot.

6. Link knots

All of these considerations and findings lead us to adopt the term improper knots for
chains with constant cuts, which can be summarized in this condensation of /ink knots that

we will use to refer to them.

Here is a particularly basic example with the Borromean knot and its four cuts.

Fig. 16

These link knots contain no intertwining.

To justify our choice of words, we should point out that proper knots have constant breaks
because they are made up of a single piece of rope. Consequently, we find it remarkable
that certain chains, made up of several loops, have a constant number of cuts, which makes
them analogous, if not homologous, to proper knots, thereby renewing the distinction
between the one and the multiple, as we will study in our last chapter.

Our aim, in what follows, is to take this homology further and establish it as a structure.

7. Distribution of interlocking

We already have the formula ip = sp — =i (main corollary), which expresses the arithmetic
variation of the cut as a function of the variation in the number of chains.



We want to show that we can treat linkages in chains oriented only by torsion, i.e.,
independently of a chosen coloring.

It is necessary to start from chains oriented by a coloring in order to calculate, according to
the correct definition of the number of entanglements, what entanglements there are in a

chain.

The directed chain by torsion, on the left of our figure, corresponds to a distribution of
chain numbers scattered among its different colorings.

In our example where r = 3:

Fig. 17

Any of the colored chains on the right of our figure shows a distribution of the
entanglement numbers between the pairs of components and a chain number obtained as
the sum of these entanglement numbers.

Among these colored presentations, we move from one to another by reversing the
direction of travel or the distribution of colors on one or more circles.

We propose to begin with a study of the relationship between the distribution of the
numbers of interlocking circles for colored chains and the distribution of the numbers of
chains for a corresponding uncolored chain.



It is easy to write down the entire set of numbers for these different cases in order to study
the permutations of signs and the correspondences that can be deduced from them.

A chain of r uncolored circles corresponds to 2'colorings that give different results when
calculating the entanglement numbers.

We denote by C the set (of cardinality r) of components and we index the chain numbers =i
by the subsets of C, that is, i € P (C), such that for any fixed orientation, denoted by o, the
orientation 7 is obtained by changing the direction

of traversal of the components belonging to i. The chain numbers thus obtained are indeed
2t

The colorings produce the same cut in pairs, with a simple global inversion of colors. We
therefore have the relationship Z1 - s-j where — i denotes the set complement of i in C.
There are therefore 2(? (") numbers of potentially different chains to distinguish, which
are linear combinations with coefficients in {+1, —1} of the numbers of intertwining of all
pairs of components.

Consequently, there are 2! numbers of cuts to distinguish.
al - Chains oriented by the characteristic

We will refer to a distribution of the numbers of intertwining for a given orientation as the
distribution of the numbers of intertwining distributed among the pairs of circles.

This is the distribution of numbers defined for a given orientation i by the expression

2

x € crois (X;. Y})

enl (X;, Y;)=1/2 §; (x)

It is sometimes more convenient to write this number multiplicatively as xiyi.

Let's define an initial relationship between chains oriented by characteristic or colored.
Renl-equivalence

Two respective colored presentation chains sii and spj are said to be Renl-equivalent if and
only if there exists a bijection f from the components of si; to those of s, such that for

each pair of components (xi, vi) of sii and, consequently, for each pair (f (xi), f(Y1) of
components of syj, the equality:



enl(f(xi), f(vi)) = enl(xi, vi).

In this case, we say that they have the same distribution of entanglement numbers between
their respective circles, and their respective chain numbers are equal: 5i = x;.

This relationship is a relationship of equivalence between colored

chains. Here is an example of two Renl-equivalent objects:

ST = -1 F(S)(T) =

TJ =-1 M) =

JS = -1 f(J)f(S)=
Fig. 18

For the same distribution of entanglement numbers between two colored chains, we find
the same entanglement number between the pairs of circles in each of them and, at the
same time, the same chain number for this coloring.

For different colorings
In the case where s1;and s»j are Renl-equivalent by a bijection f, then s;i and s2j are also
Renl-equivalent for any coloring i’ of s1 and j' of s2, where j' corresponds to i’ through the

bijection f.

Thus, the distributions of the number of interlacings and their respective number of chains
will be equal in pairs.

All we need to do is note that we move from one coloring to another by inverting one or
more circles and indicate this fact with a negative sign assigned to the letter of the circle
that changes orientation.

For example, let's note:

enl (xi’, vyi) = enl (- xi, vi).



However, the number of intertwining algebraically respects this negative sign, allowing us to write:
enl (- xi, vi) = — enl (xi, vi)

Thus, under these conditions, we can note the numbers of intertwining in relation to each
other, for example:

enl (xi, vi) = — (xivi)-

In the case we are studying, the different colorings give the following sign permutations.
ST+TIJ+JS=-3=5,

—ST+TJ-JS=+1=2,

-ST-TJ+JS=+1=2n;

ST-TI-JS=+1=2y

and to add that these permutations are respected by the correspondence f, because:

f(=xi) =1 ().

Given the result stated above and the distribution of chain numbers that appears during
these changes in orientation, we can now speak of an equivalence between chains oriented
only by torsion, presenting the same distribution of chain numbers across the various

respective orientations of their components.

They give rise to colored chains that will then exhibit the same distributions of
entanglement numbers in the case of each respective orientation.

a2 - Strings not oriented by the characteristic
For a given chain not oriented by characteristic, we call the distribution of chain numbers
the distribution of its chain numbers spread across orientations by colorings. To see a

figure of this, simply refer to our example.

This is the distribution of numbers defined for each coloring by the expression:



L = _ E enl (X;, Y;)
[Xi, Yile R
Let us define a relation between chains not oriented by the characteristic.
RX-equivalence
Two presentation chains s1 and s, respectively uncolored, will be said to be RX-equivalent

if and only if there exists a bijection g between the possible orientations of their respective
components such that for any orientation 7 of s; and, consequently, g (i) of s, the equality:

si (s1) = xg(i) (s1)
holds true.
In this case, they are said to have the same chain number distribution.

This relationship is an equivalence relationship between chains oriented by torsion signs.



fig. 19
Transition from one relation to another

Two flat chains si; and sj oriented by the characteristic and Renl-equivalent will be RX-
equivalent as chains not oriented by the characteristic.

This can be immediately deduced from the result stated above regarding different
colorings, since the existence of the bijection g is ensured by the interplay of sign changes
through orientation changes.

Transition in the other direction

Two uncolored and RX-equivalent presentation chains s; and sz will be Renl-equivalent as
characteristic-oriented chains for any pair of respective colorings matched by g.



This can be demonstrated by simple linear calculation, based on the distribution of changes.
sign between the colors. We can indeed find the C’numbers n
of interlacing of the components taken two by two.

To express this result, we will use the chain number indexing presented above. With this
notation, it is easy to write how to calculate the number of entanglements of any pair of
components knowing the chain numbers. This number is given, in the most general case,
by the expression:

enl (X,Y)=1/4[(zo+ Zix,v}) — (Zx3 + Z(v})]

showing that the distribution of chain numbers accurately reflects the distribution of
linking numbers.

In our example, which is unusual in that it only has three circles, knowing the If we can

calculate the respective entanglement numbers of any two circles for the initial coloring
using a simpler formula, namely:

2XY = (20t Ziz) =— (Zxit Zvy)

For example:

2TI=(3+1)=—(1+1)=-2.

This expression verifies the previous formula if the reader takes into account the set
complementarity between {Z} and {X, Y} in {X, Y, Z} and the fact that the chain
numbers are equal when indexed by complementary subsets in the set of letters marking

the circles.

We will therefore refer to the state of interlacing as both the distribution of interlacing
numbers and the distribution of chain numbers.

a3 - On the variation of the cut

According to the previous results, the distributions of the cuts of two flat patterns s; and s>
are mutually translated.

With or without cut
Two chains that are not oriented by the characteristics in the respective presentations s,
and sy will be RZ-equivalent if and only if there exists a bijection g between their

colorings such that for any orientation i of the circles of s, and consequently g (i) of Sp':

kip(sp) — ke(i) p' (Sp') = 2pp’



where jpp 1S a constant independent of 7.

This follows from the definition of rs, the expression for the cut, and our main result:
kip(sp) = =p(sp) — Zi(sp)

Given that sp (sp) 1s independent of orientation i, the number:

kip (Sp) — ke () p’ (sp*) = 2p (sp) — xp* (8p) = 2’

is indeed constant when i varies.

8. To conclude

Let us clarify, as we proposed, the terminology specifically concerning improper nodes.

We have grouped the distinctions encountered in this chapter into a new table, refined from
the previous one.

nodes (one) Chains (multiple loops)
Cut Not of | Cuts No of
cut (non- cut (non-
(knots) knots) (nodes) knots)
Constant constant Variation in cut-off
cut cuts
Nodes Knots Chains
knots -
1 | Chain
acan knots Entangleme
Clean I Any chains nts
knots trivial knot | TPTOPCT
knots
chains non-standard
knots
with
constant
cuts

Terminology for chains and alternate knots of 1, 2, and 3 rounds in their minimal alternate
presentation.

The concept of Knot, written with a capital letter, corresponding to the non-variation of the
number of cuts, was introduced in this chapter.



Proper knots are Knots, and we refer to them as proper knots when they require a cut.
Lacan's nodes are very classically called this because they consist of only one circle.

We will therefore refer to the chain knots encountered in this chapter as improper knots,
since they are chains, in the classical sense of the term, with constant cuts.

We now return to the term Chain, with a capital letter, to refer to chains that contain
intertwining.

So, among what we call improper knots, there are chains that we refer to as arbitrary,
because they represent hybrid cases containing entanglements and knots, due to the
necessity of cutting.

And there are Entanglements, which are chains but also non-knots.

We will subsequently isolate standard non-knots, the trivial knot made up of a simple
embedding of a circle among Lacan's knots, and the distributions of standard
entanglements among the Entanglements.

On the other hand, we have encountered new results concerning the distributions of
entanglements.

Given two chains that are not oriented by the characteristic, it suffices that there exist two
orientations of their respective circles for each of them that make their distribution of
entanglement numbers equivalent, as chains oriented by the characteristics, for them to be
equivalent for any pair of respective orientations of their components with regard to the
distribution of their entanglement numbers.

Their chain numbers s; will be equal for each pair of respective orientations of their
rounds. We can then talk about the distribution of the different chain numbers of a chain
that is not oriented by the characteristic.

This distribution translates into a variation in the cut, which becomes a criterion for the
distribution of interlacing in a chain. As a result, this distribution can be seen in the
drawings, thus establishing the reading of the nodes that we proposed to discuss at the
beginning of the previous chapter.

9. Exercises

el - Variation in cut and number of links



1. Calculate the number of enlacements of two circles by taking the half-sum of the
improper characteristics, in the following case, with the convention:

Q.

2. Find the coloring and possible cut for this same case.

Fig. a

3. Note that in an alternating case, the crossings of the non-knot part have the same sign,
and the crossings of the knot part have the other sign.

4. As aresult, the calculation is faster on the colored figure. How can we formulate the
principle of this coloring interpretation?

5. Study the other cuts to see that the variation in the cut is equal to twice the number of
intertwining, round to round.

e2 - Same exercise

Study the variation in the cut and the number of interlacing by repeating the five steps of
the previous exercise in the following cases:

R

&) & S

€3 - Non-alternating case

Fig. b



In a non-alternating case, check that the variation in cuts oriented by the characteristic does
indeed give the number of interlocks.

\&d
o

Fig. c



Chapter IV
Deformation in the node

If T assert that the characteristic of each alternable node is a completion of a cut and that
there are no alternable nodes other than nodes with a cut, I know that I will encounter
irreconcilable opposition. The following objection will be raised: the fact that it is possible
to construct a surface that is not orientable on nodes is not new; a whole series of authors
have pointed this out for a long time [32].

But to say that there are only knots of cut accomplishments is an unjustified generalization
that can easily be refuted. Too many knots surround an orientable surface without the
slightest trace of a cut accomplishment.

The author who most clearly opposes this view is undoubtedly the Orientalist
mathematician H. Seifert. He states this in his Uber das Geschicht von Knoten [36]. There
are very good reasons to favor orientable surfaces, especially if we are aiming to classify
three-dimensional manifolds, the space that surrounds our objects, manifolds of knots or
chains.

Less pessimistic observers point out that the orientation of the surface is more relevant in
space than non-orientation. Those who have studied knots from the point of view of knot
variety tend to give this predominance of the orientable surface a differential expression.
According to these authors, knots are only capable of receiving an orientable surface, and
Seifert has produced a very elegant algorithm for constructing it(1-

Apart from non-knots with an even number of crossings, which continue the surrounding
space in the surface, there are also odd non-knots that intrigue us, such as Lacan's knot,
where the gusset surface coincides with Seifert's surface, and non-alternable knots, which
can have an orientable gusset surface without requiring a cut. And it is precisely in the
alternable cases, in the cases where we have found these knots performing a cut, that it is
particularly relevant to note that the surface can be oriented without resorting to a cut.

It would seem that non-alternating nodes contradict the law of cut completion that we
believed we could deduce from the examples in the previous chapters, and that they render
our attempt at generalization absurd.

However, it is not difficult to respond to these objections, which appear so convincing. We
need only remember that our theory is based on an examination, not of non-alternating
presentations of the knot, but of alternating presentations when they exist, and that the
work of deformation by changes in presentation is discovered heuristically. We contrast
arbitrary surfaces with the minimum span surface in alternate cases. If we



call this fact "deformation in the knot," a second question immediately arises: what causes
this deformation of the knot?

It is true that there are non-alternating knots whose minimum surface area is orientable,
but the non-alternating nature of these objects is equivalent for us to the presence of the
cut in alternating cases, and has anyone ever tried to locate these knots, to discover their
relationship and connection to alternating cases? If not, all objections fall away, for is it
not also possible that non-alternating knots whose surface is orientable may, upon closer
examination, turn out to be knots after all?

When the solution to a problem presents difficulties, it is often useful during research to
move on to the next problem; it is easier to crack two nuts together. We will not attempt to
resolve the question of how non-alternating knots with an orientable surface can perform
cuts; we will first focus on another problem that also arises from what we have seen so far:
why non-knots?

The knot we studied, which we explained at length, was not interchangeable; after
calculation, the variation in the cut appeared to us to accurately reflect its entanglements.
But why is analysis necessary? Why does the knot not immediately reveal its presence? In
fact, this knot containing intertwining did not at first glance give the impression of
performing a cut like improper knots or chain knots. The reader will have noticed that the
variation in cuts corresponds to the state of intertwining of the object, which we ourselves
did not know before analyzing it.

At first glance, various answers could be imagined. For example: it would be impossible,
through the deformations, to find the alternating presentation of the knot each time. But
the presentation of another theory, the theory of entanglements, will allow us to give this
deformation another conception. This is what we will show by returning to the same
example. It will require us to reformulate the arrangement of the intertwining it contains,
but this additional effort will be compensated by a graphic resolution that will clarify the
reading of the drawings.

Starting with this chapter and continuing through the next two, we will divide the material
into two parts that follow each other from one chapter to the next. The first part will deal
with the graphical description of alternable objects in classical knot theory. The second
part will present nodal plasticity, beginning with the definition and development of the
theory of non-knots with one to three loops, which is the core of our knot theory.

I. Graphical description

0. Change in presentation



We said that the theory begins when we have an equivalence relation between flat
diagrams. This equivalence is rendered in the drawings by the deformations or changes
allowed in these presentations.

The changes in presentation that thus ensure the identity of the object can be broken down
into elementary movements.

These deformations of any object are called isotopies in classical theories. They are
performed according to Reidemeister's elementary movements.

al - Reidemeister moves

There are three types of Reidemeister moves:

I SRV

- Isotopies
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Fig. 1
Let's look at an example of how these movements are used when changing the

presentation. We start with a flat pattern, in this case non-alternating.

\
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Fig.2

We can practice different basic movements in succession.
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Until we obtain an alternating presentation of the same object. This object was therefore
alterable. a2 - Degree of movements

Each of these three types of movements is characterized by its degree. The degree of a
basic movement is defined by the number of crossings involved in that movement.

The first movement is degree 1, the second is degree 2, and the third is degree 3. In the
first two types of basic movements, the cross(es) used appear or disappear, while in the
third type, the number of crosses used remains the same.

There are also degree 0 changes.

For example, the continuous deformation of an arc that does not involve any crossings is a
type of elementary movement of degree 0.

Here we encounter a puzzle that we want to clarify in this chapter. The transition from an
object with n crossings to its dual representation on the plane is a degree n movement,
whereas on the surface of the sphere, the transition from the same object to its dual
representation is a



movement of degree 0. Let us explain this fact by breaking down the problem using more
precise definitions.

We will call the dual representation of a given representation the flat diagram obtained by
modifying the path of a peripheral arc in the drawing so that it now goes around the figure
on the other side of the flat diagram.

A N\

Fig. 4

We can describe this transition to dual representation by assuming that a peripheral arc has
been connected by a cross section with a circle surrounding the figure, but this way of
looking at things is too discontinuous due to the cross section. However, it is indeed the
same topological object.

To clarify what we are doing, we need to consider the surface that supports the drawing.
Reminder

If we make a hole, like a break in the surface, in a sphere 2, we obtain a fabric that is no
longer the same surface as the sphere in its entirety. We call this other surface, distinct

from the sphere, a holey sphere.

The sphere with a hole is equivalent to a disk (pill) with its edge. This means that the disk
with its edge, which we will also call a closed disk, is a sphere with a hole.

In this space with a rim, the part of the disc that is separate from its rim is an open set for a
standard topology of this surface. This open set is the interior of the closed disc, which we
will call an open disc.

Based on the above, we can say that the open disk is the interior of the sphere with a hole,
interior not as a container but interior in the sense of general topology.



Now, to conclude this brief review, the infinite plane is equivalent to the open disk.

We can therefore formulate that the infinite plane is the topological interior of a sphere
with a hole.

Let's return to our problem concerning the dual representation of the same object, the
result of which is obtained by continuous deformations of order zero from the previous

AN (GED

Fig. 5

What intrigues us can be formulated as follows. On the infinite plane or on the open disk
(without edges), equivalent to the topological interior of the holey sphere, changes of
presentation of degree 1, 2, and 3 must be made to move to the dual presentation of the
same node, whereas on the non-holey sphere this movement does not involve any
crossings.

Let us explain this nuance, which is invisible in the result.

Here we encounter a problem that, to our knowledge, has not been addressed anywhere
from a topological point of view, with the distinction that must be made among regular
isotopies, which extends the distinction between ambient isotopies and regular isotopies.

a3 - Ambient isotopies and regular isotopies

When all three types of movement are allowed in our drawings, we say that the objects are
subject to ambient isotopies; this amounts to placing ourselves in the ambient space in
order to theorize about the objects thus determined.

If we retain only the last two types of movement from the graphical presentations, we
would say that the objects are determined by regular isotopies, which is equivalent to
subjecting them to additional constraints that appear to be linked to the surface of the
drawing without them being immersed in that surface. In this case, we would refer to the
object being placed on a



. Regular isotopies are a convenience that has an effect on the mathematical writing of the
theory.

The question of the structure of the surface that supports the drawings in these so-called
regular conditions is not sufficiently taken into account, yet we encounter it in relation to
the degree of transition from one presentation to its dual presentation. This means that it is
necessary to take into account a theory of flattening.

To this end, let us return to the definition of duality already encountered in Chapter II,
during the first stage of the algorithm.

1. Duality

We call duality the inversion of the quality of solids and voids for a given presentation.
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Fig. 6

The question then arises as to whether we are indeed obtaining a span area and what the
area obtained is. What presentation is the span area of?

We know, having agreed on it, what the span surface of a presentation is. We define it as
the surface composed of the solid areas of the presentation deduced from the first step of
the algorithm. These areas are joined by half-twists. This means that we attach the notion
of solids to the given presentation.

The convention we have adopted is to choose the solid areas of the presentation in such a
way that the empty areas corresponding to them, by contrast, have the same sign as the
peripheral area of this presentation. The sign attached to each area is produced by the first
step of the algorithm.

In the figure above, the span surface of the given presentation, the solids attached to this
presentation are given by the drawing on the left.



Thanks to duality, we construct what appears to be another surface, whose set of filled
areas includes the peripheral area, the one around the flat diagram.

This surface is not the span surface of the given presentation. Is it the span surface of
another presentation? Deciding which presentation this surface is the span surface of

would allow us to answer this question.

To answer it, we will show that it is indeed the span surface of another presentation and
thus show which presentation and which surface it is.

Let's draw a circle around the figure to delimit the peripheral area.

Fig. 7
By deforming the surface thus obtained, we can answer the question posed. We deform the

surface by following a series of eight changes in presentation:






The deformed surface has a hole that counts as an additional circle, distinct from the
object.

We close this hole with a spherical disc to obtain the dual surface of the one we started

K

Fig. 9

The dual surface of a given span surface is a span surface modulo the question of this hole,
which we will explain in terms of a sphere and a sphere with a hole.

The collection of solids obtained by duality, joined by the half-twists corresponding to the
crossings, 1s indeed a span surface.

We previously defined the dual presentation of a given presentation. This surface is the
span surface of the dual presentation of the given presentation.

We therefore know how to construct this surface from the dual presentation; it is the
gusset surface of this dual presentation.

The duality of presentations takes its name from the duality of span surfaces. This notion
comes from graphs, as we will see.

We can verify this by considering the dual surface bounded by a circle, as we have already
encountered. By creating a continuity between this circle and a peripheral arc, we move to
the dual presentation.
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Fig. 10

This continuity is achieved by a transverse cut in the fabric in question, and this process
replaces the need to close the hole in the surface with a spherical patch.

Now that the reader has begun to experience the difference introduced by an imaginary
hole as a break in the surface, we can return to the problem posed by the degree of
transition to the dual. We will find this hole again on the sphere of the flattened object.

2. Regular isotopies on the sphere with or without a hole

We formulated this curiosity in the case of the transition through the change in the
presentation of a given flat diagram to its dual presentation. The transition from an object,
which has n crossings, to its dual presentation on the plane, is a movement of degree n + 2,
whereas on the surface of the sphere, the transition from the same object to its dual
presentation is a movement of degree 0.

al - If the sphere has no holes

We can explain the transition to the dual presentation:
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This transition is like a zero-degree movement that borrows the face of the sphere hidden
from our view, as shown by the following change in presentation.

This deformation does not actually involve any intersection. a2 - If the
sphere has a hole

Things appear as they do in the flattened plane.
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Fig. 12

In the graphic register, we can explain the transition to the dual presentation as a series of
T3 movements of degree 3, each composed of two B1 movements of degree 1 and a few
M2 movements of degree 2, as shown by the following change in presentation.

Since the same crossings are used several times in as many T3s as there are crossings, and
since two B1 movements must be performed, we will say that this change in presentation
is of degree 3n+ 2 orn + 2.

This method of counting is still crude, but we will improve it later in this chapter by
specifying the orientation of the movements using the twist sign of each crossover.

3. Graph of solids and graph of voids

Let's stay with this relative imprecision for now to see that the notion of duality of span
surfaces and presentations comes from the duality of graphs3. This translation is done
using graphs defined on flat schemes based on the result obtained in the first step of our
algorithmic series. We deduce immediately readable graphical properties, expressed in the
form of elementary arithmetic formulas, thanks to results already encountered in relation
to surfaces.

al - The duality of graphs

A graph embedded in a surface has vertices and edges and determines faces. These faces
must be disks whose portions of the graph are the edges.

These different elements, vertices, edges, and faces, are respectively of dimension zero,
one, and two.

We define duality very generally in an ordered series, when we reverse the order of the
series of dimensions.

012
210

Given a graph:



Fig. 13
The dual graph of a given graph is the graph consisting of the points that we can place in

each face of the first graph; these are the vertices of the dual graph. The segments that join
these vertices and cross the edges of the given graph are the edges of the dual graph.

Fig. 14

If we 1isolate the graph constructed in this way, we can already see that we have indeed
obtained a graph.



Fig. 15
This dual graph determines faces that correspond to the vertices of the initial graph. a2 -
Associated graphs

We consider a given presentation. In the first step of our algorithm, we determine a binary
opposition pair of areas, the full and empty areas of the presentation.

By placing a point in each solid area, if we connect these points with edges that pass from

one solid area to another at each intersection, we obtain the graph of the solid areas. It
surrounds a void in the presentation in each of these faces.

Fig. 16

The dual graph in the plane (or sphere) of the graph of the solids will be the graph of the voids.

Fig. 17



It consists of vertices placed in each empty area, joined by edges passing through each
intersection and crossing each edge of the graph of the full areas.

This is the graph constructed previously in the example we gave.

Fig. 18

This is not surprising since the full graph of this object was identical to the graph chosen
to illustrate the definition of the dual graph.

Let us now give the graph of solids and the graph of voids for our general case. They are
dual to each other.
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Fig. 19
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Here is the presentation of this general case. We can construct its full graph by placing a
vertex in each area determined as full by our first algorithmic step.



Fig. 20

It is obtained by joining its vertices with as many segments as there are arc segments in the
given object, since each of its edges intersects an arc segment.

We proceed in the same way to obtain the void graph, placing the points in the areas
deemed to be voids according to our algorithm.

Fig. 21

We leave it to the reader to verify that these two graphs are indeed dual to each other.

a3 - The formulas

These are results from surface theory that translate into literal regularities of flat nodal

schemes when objects become literal. They apply to alternating presentations, or
constructions (universes), with positive orientations in terms of torsion. It is interesting to



compare them with the results already produced in the previous chapter regarding
entanglements and cuts. They do not have the same scope.

The first relates to the spherical surface of the flattening already known to Descartes; it is
the oldest result in this discipline and was demonstrated by Euler. It states in later and
more condensed language that the Euler-Poincaré indicator? of the sphere is 2.

This indicator d is defined in a surface by means of a graph drawn in that surface, provided
that the faces it delimits are disks (spheres with holes).

Its expression is written as the number of vertices of the graph, minus the number of
edges, plus the number of faces:

& =S-A+F

In the case of a sphere, 6 = 2, he gives the theorem that the number of vertices of the
graph, minus the number of edges, plus the number of faces, equals two:

S-A+F=2

Translated into terms of flat diagrams using the graph of solids, or using the graph of
voids, this is irrelevant due to the median aspect of this expression with regard to duality;
this result states that the number of solids, minus the number of intersections, plus the
number of voids equals two:

P-C+V=2

That is, by a slight conversion that makes the dual symmetry of solids and voids around
the intersections legible, it is a proven fact that the sum of the number of solids and the
number of voids is equal to the number of intersections increased by two units. Or, as they
say, the sum of solids and voids equals intersections plus two.

This can be written as: P+ V = C + 2, our most basic formula.

This explains what we can see in our example, as in any other case.
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Provided, as always, that we do not forget to count the peripheral area, just like any other
area, among the empty areas. Indeed:

11+10=19+2=21.

There are two other dual formulas that further specify a graphic property of our flat
diagrams.

To demonstrate them, refer to exercise 2 in our previous work, concerning multitoruses
presented as spheres with handles and tubes.

The first formula states that the sum of the number of blanks and the number of circles has
the same parity as the number of the denomination. When the denomination is odd, this
sum is odd; when this sum is even, the denomination is even. This sum is congruent
modulo two to the number of the denomination.

The second formula is the dual of the previous one: there is congruence modulo two
between the sum of the number of solids and the number of hollows and the number of the
dual break.

This result can be written in condensed form in the following two formulas:

V + R =kis (mod 2)

P + R = k+is (mod 2)

And can be read in the following figure:



P=11,V=10,R =3,
kis=1+4 -3 =+1and xis=+3 -9 =-6
Fig. 23

We verify that in this case, the sum of the number of blanks and the number of circles is
odd, as is the number of cuts.

V+R=13=1,xs =1,

The character that marks equivalence = writes the congruence modulo two; for this
relation, even numbers are equivalent to zero and odd numbers to one.

Similarly, the sum of the number of solids and the number of circles is even, as is the
number of cuts in the dual surface.

P+R=14=0,is=0

We will pause here, with these first elementary formulas of knot arithmetic, in our
approach to duality. This notion will occupy us for a long time, but we must now address
the question of theories that modify and extend the experience of deformations beyond the
physical invariance of objects in three dimensions. We must now move forward into
spaces of unknown dimension according to the same principle adopted in classical theory,
simply telling ourselves that the deformation is stronger there.

I1. Nodal plasticity
Here we address a first non-classical theory. It is specific to the Freudian field and begins,

as we said in our first chapter, once we have given the definition of the movements of this
theory. It therefore begins in the same place as



classical theory with Reidemeister movements, but in a different way since it is
determined by two non-classical movements.

Let's return to what we learned at the end of the previous chapter to introduce it before
defining it.

1. Lacing

From the previous chapter, we already know the linking numbers of a chain whose loops are
oriented, and we have learned how to calculate them. Their distribution provides us with a
good analysis of the state of linking in the chain under consideration. In this regard, we
have defined an equivalence relation ren between oriented chains.

The number of chains i, for a given orientation, is the sum of these entanglement numbers
of pairs of loops. It is an invariant of ambient isotopy and, a fortiori, of regular isotopy of
oriented chains.

In the case of chain presentations whose circles are unoriented, we agree to associate them
with the span surface (1st step of the algorithm) that leaves the space around the node
empty. They are therefore necessarily oriented by torsion thanks to this convention.

We will refer to these chain presentations as uncolored chains, as long as coloring is not
involved (2nd and 3rd steps of the algorithm).

Under these conditions, we will not take into account the presence or absence of the span
surface, but we will consider uncolored chains as oriented by torsion.

We then considered, in the case of uncolored chains, the distribution of chain numbers
according to changes in the orientation of its components. In this regard, we defined an
equivalence relation rz between uncolored chains.

There is a correspondence between the distribution of chain numbers in the uncolored case
and the distributions of entanglement numbers in each of the oriented cases. This
correspondence is summarized in the following statement.

From entanglement to chain number

Two uncolored chains s; and s> will be RX-equivalent if and only if they are, as oriented
chains, Renl-equivalent for each of their respective colorings related by g.

This proposition summarizes the last two statements relating to the properties of these
relations in our previous chapter.



These considerations give us the simplest proof that chains are effective chains; they hold
together and their components interlock in pairs.

On the other hand, we know of chain knots that hold just as well and whose chain numbers
are zero for all orientations, as in the case of Borromean rings or Whitehead's chain. These
chain knots, or improper knots, are chains with constant cuts.

Proper knots, made of a single component, always have zero chains and are therefore
constant cut.

If we want to write a theory of knots and chains that preserves only the Renl relations
between oriented chains and the Rz relations between uncolored chains, and therefore
respects only the state of entanglement, we can add regular homotopies and Gordian
moves to the Reidemeister moves that generate the ambient isotopies of the classical
theory Tc of knots and chains. We will immediately define these two types of additional
moves.

Conversely, we are not certain that two Renl-equivalent oriented objects, or uncolored RZ-
equivalent objects, with the same entanglement state are identical in this theory. Proof is
needed to be sure. This will give rise to a theorem.

2. A theory of entanglements

In this theory TO of entanglements, the set of movements leaves the entanglement state
unchanged.

Here we move within the set P of presentations of chains and uncolored knots in terms of
components, from which we choose any coloring when the calculations require it and take
into account the set of colorings for the correct definition of the entanglement numbers.
We have the set EQ of moves that are divided according to a set TEO of types:

TEO = {B1, B1*, M2, T3, G, H, H*

Let us specify the types of transformations that respect the entanglement state within a
chain, i.e., that preserve the relation Rrs.

al - Definitions of the types of movements in this theory

1. We have Reidemeister-type moves to change the presentations.
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2. Regular homotopy undoes proper knots and certain chains, those containing proper
knots, by acting at each proper crossing by inverting the top and bottom.
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un croisement propre un croisement propre

Fig. 25
We will call these regular homotopies proper Gordian movements.
3. Improper Gordian movements undo certain chains, those containing improper knots, by

acting at the level of a pair of improper crossings that must involve the same two circles,
have the same torsion, and have the same crossing signs.



opposites. The latter distinction is characterized by the presence of a cut for one and the
absence of a cut for the other of the crossings that are unsuitable for any coloring.

deux croisements impropres
de deux mémes ronds

Fig. 26

This set TEO of transformation types defines the topology of nodes and chains with
ambient Gordian knots, i.e., the theory of Enlacements.

A series of Gordian moves § is a transformation of the presentation S into the presentation
S,

$: P — P, such that $ (S)=S'
defined by a series of movements xi,
(x1, X2, ..., Xi, ..., Xn) With xi € E0

where each of the movements xi is an elementary change of presentation taken from the
types in the set TEO.

Thus: § (S) =xn (... xi (... x2 (x1(S)))), where the bar above the letter designating this
change of presentation, i.e., a series of movements, serves to remind us how much these
movements cause the isolated cut in our drawings to drift, until it disappears momentarily.
We will refer to this as the movement of the cut.

We then define, thanks to these changes in presentation, a relation ro (s1, s2) on the set of
node or chain presentations.

That is: ro(s1, s2) © 3 $ (8 (s1) = s2).



This relationship is one of equivalence. We will sometimes denote it as S1 =0 S2.

We will call the equivalence classes defined by this relation Enlacements. These classes of
presentations constitute the objects of this theory.

The theory TO of Enlacements is indeed the theory of these equivalence classes, and it is
easy to show, by careful calculation of the crossing signs of any orientation, when dealing
with improper crossings, that these movements respect the numbers of enlacements, and
therefore the relation Rrs.

Identical objects in this theory have the same linking.
For two presentations of chains or knots s1 and s:
Ro (s1, s2) = RE (S1, $2)

Reidemeister moves do not change the sum of the signs of improper crossings. This is
because only move B1 removes or adds a crossing, but it is proper.

Homotopies act only on proper crossings, so the number of entanglements is irrelevant.

Gordian knots act exclusively on improper crossings; they are designed not to change the
number of intertwining of a pair of components. These movements reverse the twist sign
and the crossing sign of two crossings involving two identical rounds with the same twist
and opposite crossing signs. Their action on the crossing signs therefore does not change
the total number of interlacing, i.e., the number of chains, because a +1 sign becomes -1
and a -1 sign becomes +1.

a2 - Effectuations
Let us give two examples of these transformations and this equivalence relation. We
propose to carry them out in the most general case we have chosen so far, using the rings

of the Borromean family.

Let's return to the general case we have been studying since the beginning:



Fig. 27

and let's break down its knot using these movements®:
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This change in presentation $ is defined by the series of movements:

Fig. 28
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(G, T3,2 x M2, M2, T3, S, B1, T3, M2, G, M2, D)

where S stands for crossing over a circle forming a junction, making five junctions, i.e.
(M2, 5 x T3, M2), and D stands for duality in this case, i.e.:

2xM2,2xT3,3xM2,4xT3,2xM2,2x Bl)

that is:

(G, T3,2x M2, M2, T3, M2, 5 x T3, M2, B1, T3, M2, G, M2,
2xM2,2xT3,3xM2,4xT3,2xM2,2x Bl)

In the case of the chosen coloring, let's compare its chain number to that of the result obtained.

1=12-9+5-2)=-30Zi=12(-6)=-3
Fig. 29
The Borromean rings

We undo the Borromean knot by performing a series of movements consisting of a
Gordian movement G, followed by a Reidemeister T3 movement, then three M2 knots.



Fig. 30

Let us consider the series: (G, T3, M2, M2, M2), where it can be verified that the
Borromean rings do not contain any intertwining.

a3 - Gordian knots with different twists

Let us define a type of movement that is composed of two previously encountered
movements. The non-alternating Gordian movement acts at the level of a pair of improper
crossings that must involve the same two circles and have opposite torsion signs and
opposite crossing signs. This latter distinction is characterized by the fact that the chosen
crossings with different torsions are of the same type with respect to the cut. Either it is
present in both crossings, or it is absent.

We will index them by their torsion sign.
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Fig. 31

Let us show how these movements between non-alternating crossings are composed of our
generating movements.

In the case of a pair of crossings involving two identical circles, we can always create a
link between these two circles using movement M2. This produces two new crossings in

relation to each other.
e
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Fig. 32

However, it is necessary here to produce crossings of a different type relative to the given
cut, which can always be achieved by suitably choosing the arcs that produce a new mesh
and adding a loop if necessary.



*Fig. 33

If our initial crossings have inverse twist numbers, they can be paired with the new
crossings. In this case, we can perform two alternating Gordian knots defined above. We
then simply reduce the mesh by movement M2 to obtain the desired result.

We use these non-alternating Gordian knots in the

following. a4 - The different interlacings

At the beginning of this chapter, we said that we did not have proof of the reciprocal
implication that two chains with the same analysis of the entanglement state, RX-

equivalent, would be identical in entanglement theory.

This raises the question of whether, for two chains s; and s that are RZ-equivalent, there
is always a series § of movements between them such that:

S2 =(S1)

Answering this question in the affirmative proves the following theorem.
Two equal enlacements are identical objects

If two chains s1 and s» are RX-equivalent, then they are RO-equivalent: rs (s1,
s2) = Ro (s1, 2)

Proof

Let us define a composition mode, denoted #, between chains such that their entanglement
numbers or chain numbers add up.



This composition mode consists of connecting the span surfaces by as many bilateral
ribbon immersions as there are chain components. These ribbons must respect the
bijections f and g of our relations remt and rz and the coloring of each of the composed
surfaces.

It may be necessary to twist these ribbons in order to satisfy this last condition.

This composition also connects the respective components of each chain, respecting their
chosen orientation.

The use of bilateral ribbons ensures that we do not create entanglements, as their edges are
traversed in both directions. Consequently, where their edges enter, they also exit.

Let us use this method of composition based on two s; and s> chains, which are RZ-
equivalent, choosing an example to aid in understanding.

Fig. 34

Let's call s;”! the presentation obtained by inverting all the crossings of s,.



Fig. 35

And we construct the compound s1# 8! #S2 as (si#s2' )#s20rassi#(s2”! #s2):

Fig. 36

There is a series of Gordian moves between this compound and s; on the one hand, and
between this compound and s> on the other.

This compound differs from s; by the chain s;! # 2, and from sz by the chain g1 # Sy! .

These two compounds are indeed knots, since their linking numbers are zero for all
orientations. Indeed, the composition by # adds the linking numbers for each respective
orientation, and s; and s> have the same distribution of linking numbers



, which are simultaneously opposite to the entanglement numbers of s~ by construction.
Knot chains have no entanglement

A chain knot can always be reduced, by a series of movements from the to theory, to a
trivial chain made up of scattered rings.

We demonstrate this by noting that in a chain knot we can always stack the loops by acting
with alternating Gordian knots and Gordian knots of different torsion at the height of the
Improper crossings.

It suffices to note that in a chain where si is always zero, by definition, its improper
crossings can be paired, either by pairs of elements with the same twists and different
colorings, or by pairs of elements with opposite twists and the same colorings. They
therefore exhibit

therefore exhibit symmetry between them, without remainder since there is no entanglement.

Let's verify this fact in the chosen example by reducing the chain s1# S "!to a trivial chain:

Fig. 37

Let's reduce the chain s2! # s to a trivial chain:



Fig. 38

By doing this when the circles are stacked, we can use Reidemeister moves to disperse the
circles that can still form proper knots, if necessary.

In this case, we will need to undo the proper knots by homotopies to prove our lemma.
Thanks to homotopy, we already have the following result.

Proper knots are trivial

Proper knots form a single class for the relation ro.

This second point is easy to prove using homotopy. Any proper knot can be reduced to a
stack of loops. This mesh is equivalent, using Reidemeister moves, to the trivial proper
knot consisting of a simple embedding of the circle in space.

This completes our proof, because:

si# (S127! # s2)o=0 s1# 0=0 51 (51 #

s ) #5220 0#s2%052

The verification consists of counting improper crossings, but can always be constructed in
the case of any two objects.

Due to the equivalence between the relations rz and ro, this theory effectively groups RZ-
equivalent entanglement states into stable equivalence classes for ro. In each



class, we can choose an exemplary case that condenses its entanglement state and
represents that class. This choice allows us to begin interpreting, using these exemplary
cases, the average number of cuts XS in our main theorem.

We will continue along this path in the following chapters, but not without first providing
the means to compare these results with the graphical data of our objects.

6. Gordian and homotopy

We now have two extreme and opposing theories. The classical theory of knots and chains
TC, which deals with physical objects that we can make with string, and the theory of
entanglements TO0, which deals with the easiest chains to imagine, since the rings pass
through the holes of other rings, and easy to write, since the state of the entanglements can
be presented as a table of linear combinations and calculated on the drawing. This theory
reduces all objects in classical theory to these.

We will summarize this situation with the following diagram:

TO

TC

and it is by refining this with other alternative theories that we will attempt to clarify our
progress. These theories give rise to groupings of objects characterized by specific nodal
structures, such as proper knots, entanglements, Whitehead chains, Borromean chains, and
reductions, rendered by theorems specific to each. We will develop some of these in
studies ancillary to this series of works according to their effect on the overall structure, in
order to orient ourselves within the multitude of objects.

al- Lacan and Soury

We can begin by situating Lacan and Soury's respective statements as their two respective
theories.

Those who attended Lacan's seminar still do not know what he was trying to show during
the 1970s. Our work answers this question, despite the diagnosis often made by most,
without having looked closely, of a search for totality.

This is politely presented, thanks to a literary reference, as a search for the absolute.
However, Lacan does not seek the absolute for the simple reason that, for him, absolute
means



means separate, and that when it comes to detachment, others have already said all there is
to say about what can be achieved.

Children who produce a transitional object make a discovery of the absolute that the
Western adults around them cannot fit into their categories.

Lacan points to the place of a theory of chains and knots with improper Gordian
movements, which we will refer to by the acronym g, since it performs this type of
movement. [t is true that he uses it to account for the transition from four to three. We will
return to this question in our last chapter.

For Soury, things are more straightforward. Soury studies chains with homotopies, which
he also calls Borromean chains, in a theory that we will refer to by the acronym ta. We
know, having heard him say so, his main argument in this investigation. He reasoned as
follows:

— Lacan, studying knots, speaks insistently of the Borromean knot.

— Milnor [29. a and b], studying these same objects, encounters the Borromean knot,
which he calls almost trivial.

— Is it for the same reasons?

As a result, Soury focuses on Milnor's work and embarks on calculations of
noncommutative groups and Magnus's calculations. He seeks to make Milnor's number of
an object more accessible through drawing to those who do not practice algebra.

These different theories, in particular ta theory, are of additional interest to us because
they model in three dimensions what happens in four dimensions. Or, if you prefer, they
deal with objects immersed in three dimensions, which remains a fairly good mental
picture of what happens in four dimensions.

It is mainly this question of dimensions that will concern us. At the end of the following
chapter, we will show how a structural break can be detected, with regard to non-knots,
between three and four dimensions. This depends on the number of entanglement states.

It is clear to anyone who works with these topological spaces that, to date, there is no
construction of space or dimensions that provides a continuous model for 1 theory. The
fact that this theory is not topological in three dimensions does not rule out the possibility
of a topological model in other dimensions. Or else it must be demonstrated.

We can draw up a graph of the relationships between these different theories, which gives
the following diagram that we will enrich as we progress.
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The two theories, TG and TH, deserve to be considered separately, and the relationship
between them needs to be established.

This study will establish the relationship between improper Gordian movement and
homotopy (proper Gordian movement).

This will be an opportunity to address the relationship between proper, a single circle, and
improper, multiple circles.

We will introduce this study of the relationship between the one and the many with a well-
defined relationship, known as homology, at the end of this book.

However, Soury identifies a difficulty by highlighting the existence of Borromean rings
that are undone by homotopies, but—and this is what characterizes him—homotopies
performed on different circles. This property is therefore difficult to see in group
calculations. In addition, he presents an example that has an alternating presentation made
up exclusively of improper crossings.



Note that there are objects that are no longer visible from these two theories. This means
that they can be undone by both Gordian cuts and homotopies, such as Whitehead's chain.

La chaine de Whitehead

Fig. 40
a2- The generalized Borromean knot

I intervened in this debate with the Borromean knot, which Lacan said was the generalized
Borromean knot.

Fig. 41

The function of this knot condenses the complications that theories based on Gordian
movements, whether proper or improper, are blind to. Let us therefore introduce an
intermediate theory based on generalized Borromean and Whitehead.
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At this point, we do not know what kind of movements could be used to define it. We will
only define it in chapter seven.

We will therefore only deploy the network of these different theories in the last chapter of
this book.

But first, we will draw other conclusions from the comparison of the two theories T0 and
TC, through the analysis of the average number of cuts ss.

7. Exercises
el - Change of presentation and dual presentation

1. Change the presentation of the following objects until they are reversed, if possible.
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Show that the following knot can be re-alternated as in the second drawing.

CT) C{ﬂ
& (&

Fig. a

—
Fig. b

2. These two presentations are dual to each other:

&

We move from the first to the second by turning an arc on the sphere, or by placing it in
continuity with a circle that surrounds it.

Fig. c

Fig.d



Deform the presentation above to obtain the second figure of the clover.

3. Check by switching to the dual representation that the Listing knot drawn here is
autodual (although inverted):

&)

4. Note the regular duality of the following objects

Fig. e

€2 - Dual graphs of solids and voids

Draw the graph of the voids and the graph of the solids for the
following objects.

SIEHES

Check that they are mutually dual to each other. €3 -

Fig. g

Calculating elementary formulas



Check the elementary formulas for the following cases:

&
9
Xt

P+V=C+2 V + R =kjg (mod 2) P + R= k*;g (mod 2)

&9
@

Fig. h
e4 - State of entanglement

Using Gordian moves and homotopy, reduce the following chains to their linking state, in
the form of a non-knot.

Fig.1



Chapter V
The material and sources of the knot

The first question we asked ourselves, after analyzing the node chosen as an example and
determining that it was a cut, was whether this was a general characteristic. During this
interpretation work, other questions came to mind. Now that the first point has been
clarified, we can address these issues, even if it means losing sight for a moment of the
reason for the cut, the study of which is by no means complete.

We know, thanks to our interpretive work, that we can discover in knots a knotted part and
a non-knotted part. We must hasten to reexamine one by one the various problems posed
by the knot and thereby seek to resolve enigmas and contradictions which, as long as we
knew only the knot in its entirety, seemed insoluble to attempts at classification.

In our first chapter, we presented the mathematical results of authors who have studied the
knot in terms of the relationship between the knot and the space that gives rise to it,
without questioning the origin of the knot's material or the composition of that material. In
doing so, we will answer the question of what causes the complexity in knots and chains.

I. Graphical description

Let us specify here three particularities of the description of objects, never observed before
us, not yet explained:

I — Knots and chains have two parts, called knotting and non-knotting, which may
themselves be made up of several components.

2 — Knots and chains choose the components of the knotting part from among pure knots,
and those of the non-knotting part from among non-knots.

3 — Knots and chains arrange their parts according to a very specific composition method
among the various possible composition methods. We will refer to this as regular and

define this type of regular assembly.

These particularities in the choice of object elements were, of course, drawn from
observations made on the different parts of the knot.

In this chapter, we will study the source of these parts taken separately. We will study the
regularity of the composition of its parts in the following chapter.

0. The first node



Fig. 1

The first primary knot [2, Sém XX, p. 111], the Trefoil knot, is a knot in the mathematical
sense of the term, since it is made by tying a single loop. For us, in our way of speaking, it
is a proper knot.

al - The concept of the first knot

Let us now define the method of composing nodes that leads to the concept of the primary
nodel.

We can connect two nodes by joining their respective span surfaces with a single ribbon.

(DY

Fig.2

From the point of view of knot theory in its relation to surface theory, knots made with
string are homologous to knots on the edge of a surface.

This reference to surface theory is a convenience, in order to define things clearly. In this
way, from another point of view, the knots are arranged on a string that forms a circle. An
indefinite number of knots can be composed in this way.
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If we close the circle by joining the two ends of this figure, we see that we have knots
arranged in circles distributed along the same chord.

Fig. 4

The general form of this composition consists of joining the knots by means of a
continuity junction. For reasons of convenience, this junction can be designed as a
junction of ribbons connecting their respective span surfaces.

»
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Fig.5



With this mode of composition, we can speak of the decomposition of an object into
elementary knots. These are the prime knots.

a2 - The monoid of primary nodes

This method of composition can be misleading, giving the impression of a certain
relevance due to the fact that it presents a structure that has a name in algebra, namely the
structure of a commutative unitary monoid, but this algebraic structure is fairly
rudimentary. It is associative in the sense that the composition of two nodes, itself
composed with a third, is equivalent to the composition of the first with the composite of
the other two.

This is easy to write, in such a way that the associativity can be seen in the use of
parentheses:

(N1 #N2)#N3=NI1#(N2#N3)
whereas it is not apparent in the presentation of the three nodes on a string.

It is more remarkable to note that this mode of composition is commutative. The nodes can
effectively be moved in their order along the string that joins them in a circle. The reader
can experiment with this by constructing a composite of nodes and trying to change their
circular order. They must be passed through each other, which is always possible.

This commutative monoid has a neutral element since the simple circle, also known as the

trivial knot, can be composed with other knots. The result of the composition does not
change the initial compound.

Fig. 6

However, there is no inverse element, which is why we refer to a monoid structure and not
a group.

The prime nodes are those that remain indecomposable into simpler elements according to
this mode of concatenation.



This point of view establishes an analogy with prime numbers that cannot be decomposed
by multiplication, among positive integers, which themselves have a monoid structure
when composed by both addition and multiplication.

This mode of composition does not take our colorings into account. It is contemporary
with the first step of our algorithm and is restricted to introducing only one ribbon for each
node.

In Chapter VII, we will ask ourselves whether this mode of concatenation can be
generalized by using several ribbons between each node, especially in cases where we
have several circles in a knot.

The node tables list the prime nodes and prime chains defined in this way using this
approximate and algebraically rather amorphous mode of composition. We have seen
internally within each object that a richer arithmetic is already at work, and that externally,
the composition of the intertwining also already allows for more developed calculation.

For now, with our graphical description, we continue to specify the internal properties of
our objects.

1. Cut nodes and combs
al - The trefoil knot

This first node, known as the cloverleaf node, is a specific toric node in that it is produced
by a regular path on the torus?.

3 Fig. 7

Before studying these various flattened representations, we emphasize this initial toric
representation. It justifies the name given to it. It is the flattened knot that has the smallest
number of crossings. Note that the smallest knot can only be achieved with a minimum of
three crossings. Given the first step of our algorithm, this presentation corresponds to the
smallest number of voids. Its minimum span surface here is a Mdbius strip with three half-
twists(3-



There are two cloverleaf knots in space that are inverse to each other in the sense that they
are inverted upside down at the level of the crossings. These two trefoil knots are not
superimposable, or to put it another way, there is no series of Reidemeister moves that can
transform the flattening of one of them into the flattening of the other.

This knot can be presented as the edge of a bilateral surface in another presentation, which
we will return to below.

a2 - The family of trefoil knots

This cloverleaf knot initiates a series of alternating knots:
3

These are toric knots that always make two longitudinal turns and only two, with any odd
number of meridian turns®. We count them among the clover knots. These are cut knots
because they are qualified by our colorings with an odd cut.

Fig. 8

Fig.9

These knots are part of the cut knots. Cut knots are alternating knots in which all crossings
are crossed by the cut. These cut knots will be used in the composition of regular
assemblies that will allow us to define and describe any knot.



a3 - Interlacing

There is a configuration with only two crossings. In this case, it is not a proper knot but a
chain made of two loops.

There is a simple interlacing with two crossings, which is a toric chain.

O ®

e Fig. 10

In this presentation of the entanglement with the smallest number of crossings, we can
stretch a surface of span using the first step of our algorithm. There are then two solids and
two voids.

Fig. 11

The second step of the algorithm indicates that this is a non-knot because there is a
coloring that does not require cutting. The minimum surface area is an orientable ribbon
with two half-twists. It is a sphere with two holes and twisted by a full twist.

Fig. 12



Our aim is to contrast within the structure what is a knot, of which the trefoil knot is the
simplest expression, and the non-knot, of which the simple entanglement is the smallest
example.

a4 - The family of toric interlacings

This first case develops in the elementary linkages of two circles that are chains.

DS

2 6

They complete two longitudinal turns and only two, and an even number of meridian turns
on the torus.

Fig. 13

4 Fig. 14

These are non-knots since they can be colored without interruption.

Fig. 15



These toric chains are so named because they consist of two circles due to the even
number of meridian turns on the torus. Since there are several circles, there are therefore
several colorings.

By changing the choice of colors on one of the circles, the two-color coloring of such a
continuous interlacing will present a break.

4 Fig. 16

These toric chains with an even number of crossings will serve as prototypes in regular
assemblies in the case of breaks passing through an even number of twists. We will use
them as such in the definition and description of arbitrary knots in the following chapter.
This observation does not contradict our definition of non-knots, since to be considered as
such among alternating objects, it is sufficient that there be a coloring without breaks.

aS - Cut knots

We call the toric knots we have just discussed, which make only two turns of longitude,
cut knots when their coloring requires a cut.

Fig.
17

a6 - Combs



The dual presentation, defined in Chapter IV, of any cut node of the clover family or the
entanglement family we have just considered, are combs, odd or even.

SISISIES

2 4 5 6

Fig. 18

This dual presentation is obtained by inverting a peripheral arc of our previous toric
presentations.

Fig. 19

We call these dual presentations of cut nodes, from the family of entanglements and the
family of clovers, combs. These combs are always susceptible to cut-free coloring. This
fact does not contradict our distinction between trefoils as cut nodes and enlacements as
non-nodes, because these definitions take into account the minimum span area of each
object, thus presentations with the smallest number of voids, which is no longer the case
for dual presentations.

Fig. 20



Odd combs have a knot from the clover family as their edge. There is therefore only one
cut-free coloring because it is a clean knot.

On the other hand, even combs have an edge that is a loop, which is a chain of two circles.
There is therefore another coloring, this time with a cut.

Fig. 21
Even and odd combs are obtained by braiding two strands. These are all two-strand braids
that are closed to form chains and knots. These even and odd combs will allow us to
produce any alternating non-knot.
2. Non-knots and pure knots
al - Cross sections
We now extend the description of objects by defining the process that allows us to obtain,
respectively, from combs, the multiplicity of non-knots, and from cut knots, the

multiplicity of pure knots.

There are two types of cross sections, which are dual to each other: cross cuts in non-knots
and cross straps in pure knots.

The existence of these cross-sections causes the real difficulty of knot theory, as we
announced at the beginning. Without them, there would only be braids, and knot and chain

theory could be reduced to braid theory.

Braiding theory can be transcribed into algebraic group theory using a very simple
process. This result, due to Artin, resolves the question of their classification.

Transverse cuts

Let's return to combs. These are alternating objects, with two solid parts and capable of
two-color coloring without cuts.



If we make transverse cuts in the span of a comb, we obtain a non-knot. A transverse cut is
a cut that can be made with scissors in the span. A transverse cut always goes from one
void to another void.

Fig. 22
Transverse cuts of combs produce non-knots.
It is noteworthy that even toric (even) non-knots, which produce combs by duality, can be

obtained by transverse sections of combs. However, it is important to note that the twist of
the crossings is reversed in duality, whereas it remains unchanged in this process.

The important result to remember is that, conversely, any non-knot is always the product
of cross-sections in a comb. But we will have to prove this.

Note that the transverse cuts never cross the cut that isolates the knots, since we make
them exclusively in the non-knots.

Transverse straps

The dual concept of the transverse cuts that we make in non-knots is the transverse strap,
which is a ribbon stretched across a gap in a pure knot.



A set of straps added to a cut node produces a pure node.

Fig. 24

Note that, unlike transverse cuts, which always respect the coloring if they do not
encounter the cut, the ribbons placed across the gaps in the pure knots must respect the
coloring at the point where they attach to the surface.

We demonstrate by duality the same result as that which defines non-knots as always
obtainable by transverse cuts in combs. This result then states that a pure knot can always
be obtained by a set of transverse straps added to a cut knot.

a2 - Non-knots and pure knots

If a set of transverse cuts in a comb always yields a non-knot, we are not yet certain that a
non-knot is always obtained from a comb by a set of transverse cuts. We will now
demonstrate the following result.

Any non-knot is always obtained from a comb by various sets of transverse cuts.

We will prove this in the opposite way to what we have done so far, starting from any non-
knot and showing that it always gives rise to a comb thanks to transverse ribbons.

Fig. 25



A non-knot, apart from being alternating, has a set of voids that are always of even
valence, as assured by the principle deduced from the second step of our algorithm.

In the dual presentation of a non-knot crossing, without a cut, a cut occurs if we do not
change the orientation of the circles corresponding to the coloring.

Fig. 26

This means that a cut crossing is the dual of a non-cut crossing.

But since the empty areas of a non-node have even valence, we can connect these different
crossings of the dual presentation in such a way that the crossing forms a circle.

Fig. 27
In fact, the cut entering an area of even valence can always exit® this area.

Finally, it is remarkable that the cut of the dual presentation of a non-node closes in a
circle that delimits two areas in the plane: one of which contains and supports all the areas
of the same color 2 the starting non-node. All areas of the other color are located on the
other side of the cut, in the other area delimited by the circle formed by the cut.

Therefore, based on our algorithm that establishes the parity of the empty areas of an
object that appears as a non-node, we can always use monochrome ribbons without twists
that do not encounter the cut in question to join the areas of the same color and transform
them into a single area. The same applies to the areas of the other color.



Fig. 28

These ribbons, which join the monochrome areas on either side of the cut circle in the
dual, do not cross, do not interfere with each other, and do not obstruct each other because
they transform these areas of even valence into areas of valence two.

Fig. 29
We can conclude that it is always possible to reconstruct a comb that has a surface area
consisting exclusively of two solids and two valence voids, with a number of crossings
equal to that of the given non-knot.

We have therefore demonstrated the result we announced.

We perform the same transformation in a richer case, i.e., one that is more complicated in
appearance but has the same simplicity because it has the same structural property.



Fig. 30

Fig. 31

This structural property becomes even more apparent, to the point of seeming trivial, if we
perform the inverse transformation, producing a non-node from a comb in the presence of
the cut in the dual.



Fig.
32

The reader will note, however, that we have not performed the transverse cuts that exactly
cancel out the added straps in the presentation of the inverse transformation in Figures 25,
28, and 29. As a result, the cut traced in the dual of the non-knot in question does not
traverse the voids along the same path. This shows that it is necessary to perform a
calculation on the drawings that is not trivial. If we want to obtain the previous path of the
cut, we must cut the comb in a different way.
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Fig. 33
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The dual result is as follows: any pure node can always be obtained by transverse ribbons
from a cut node.

In fact, a pure node is an object such that the cut passes through all the crossings.

Fig. 34



We can always reconstruct a cut node from a pure node by as many transverse cuts as
necessary that do not encounter the cut.

SO

These transverse cuts are simply transverse ribbons added to the dual non-knot, as in the
previous proof.

Thus, the dual result announced, any pure knot can always be obtained by transverse
ribbons from a cut knot.

Fig. 36

Now that we know how to describe all non-knots and pure knots from combs and cut
knots, thanks to cross sections, we will be able to show in the next chapter how any
alternating objects we want to theorize about are obtained from these elements through a
regular mode of composition. All we need to do is apply these cross sections to regular
assemblies made exclusively from combs and cut nodes. We will therefore refer to
assemblies constructed exclusively from combs and cut nodes as regular assemblies.

I1. Nodal plasticity

Non-alternable objects will respect these structures (unmiverses). These structures
correspond to immersions in the plane, although they pose a broader plastic and
topological problem, not just a graphical one. Non-alternable objects represent an
additional difficulty since the knot accomplishes a non-alternability that we will resolve
from a nodal point of view. The arithmetic study of the previous chapters begins to explain



reason. In this plastic approach, the source of our objects is different since the movements
of the theory of Enlacements allow us to re-alternate any object with one, two, or three
circles, and even more, as we will now show. The theory of entanglements becomes the
theory of non-knots with one to three circles. We will continue the arithmetic of knots in
the next chapter when we have completed the graphical description of the structures that
follow the alternating presentations.

1. Theory of non-knots with one to three loops

We call a knot or alternating chain a non-knot if its minimum girth surface is bicolorable,
i.e., it does not require cutting.

These non-knots are always alternating by definition.

We can talk about a theory of non-knots in the context of the theory of Enlacements in
cases consisting of one, two, or three circles.

Under this condition on the number of circles, r < 3, knowing that all presentations of

knots and alternating and non-alternating chains belong to a Linkage, we now call this
class a non-knot, because we can advance

The existence of standard non-knots

Each class, constituting what we have called a linking, has a standard non-knot that
represents it.

This fact is demonstrated by the formal study of the distributions of entanglements by the
characteristic table of entanglement states, the movement of negative signs that mark the
change in orientation of circles as well as the inversion of the characteristic signs of
crossings in the formalism that we introduced in the study of rem and rz relations and the
effective construction of non-knots.

Let us consider, for r < 3, the two tables presenting the richest complexity in this domain.

Simpler entanglement states are obtained when certain values in these tables are zero or
certain letters are absent:

ST+TJ]+JS=5ss —ST-TI-JS=73,
—ST+TJ-JS=%;5; ST-TI+JS=2%
-ST-TI+JS=2%m ST+TI-JS=ZXm

ST-TI-JS=%y, —ST+TI+IJS=2y,



We know how to construct, as we will show immediately, a copy of each entanglement
state corresponding to each table and therefore to each non-node.

This instance offers a minimum number of crossings in each case and is purely
inappropriate.

We call this non-node representing a given class the non-node contained so in any
presentation belonging to that class.

al - Construction of non-nodes with one to three circles contained in a node or chain

One - Let's start with nodes consisting of a single circle. There is only one non-node,
which is the trivial node:

Il n'y a qu'un non-nceud & un rond
Fig. 37

Two - In the case of chains made up of two circles, apart from the trivial chain:

The non-knots are made up of the series of positive torsion toric non-knots:

LG

Fig. 38

-

Fig. 39



Three - In the case of chains made of three rings, apart from the trivial chain and the
previous interlacing accompanied by a free ring, the non-knots consist of alternating
positive twist chains made of three rings:

3

and the two series of Olympic chains, one the inverse of the other, of which we give the
first examples:

XS,

These two different series are summarized in the following figures indexed by three
integers:

E 55559‘5

avec mz1, n21 et p21.

avec mz1 et n=1

Fig. 40

Fig. 41

Fig. 42

Here we have established the prototypical representation of each non-node in our theory as
a standard non-node.

We do indeed obtain all types modulo ro and rs. a2 -

Another calculation of entanglement



For a given presentation, r £ 3, we construct the entanglement state that belongs to it, in
terms of its standard non-knot. The distributions of these entanglements correspond to a

distribution of chain numbers that allows us to designate this standard non-knot
of this entanglement state.

We can then refer to the non-knot so contained in a knot or chain.

The average of the cut numbers 5o of the contained non-node so of the equivalence class of
the given presentation provides a new calculation of the entanglement contained in the
chain as a function of torsion, independently of colorings.

It should be noted that the non-standard nodes contained in the strings are purely
inappropriate and that, as a result, a simple calculation is required.

Opposition of dual numbers of average cut

For standard non-nodes, the average of the cut numbers calculated in the dual X*is the
opposite of the average of the cut numbers 2, i.e.: 0

25 =-20

In standard non-nodes, the proper twist is zero, h = 0, because there is no proper crossing.
Thus, according to our main theorem:

co—250=0
C'o—2Y%=0

However, the equality C* = —C is justified by the inversion of the torsion signs in duality,
hence our proposition.

But this change of sign has no effect on the definition of the characteristic number of the
linking thus calculated, if we stick to the non-knot constructions proposed.

Only one of the Olympic series has negative linking numbers. This is due to the existence
of the two tables in the only cases where all the linking numbers are non-zero.

2. Theory of linkages based on four circles

Beyond three circles, we still know how to construct examples of some of the interlacing
distributions.



They correspond to a state of entanglement rendered by a table that is only more extensive
than in cases with fewer than three circles:

S + ST+ 82 + IT + J2 + TZ = +6
-8 - 8T - 82 + IT + JZ2 + TZ 0
-8] 4+ ST + SZ - IT - JZ2 + TZ 0
8] = 85T + 82 - IT + J2 - TZ = 0
81 + 8T - 8Z + JT - JE - TZ = 0
8] - 8T - S8Z - JT - JZ + TZ = -2
-8] + 8T - 82 - IT + J&2 - TZ = -2
-8] - ST + SZ + JT - J2 - TZ = -2

This table corresponds to this alternating presentation.

S —
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Fig. 43

These examples appear as non-knots, they offer the minimum number of alternating
crossings and are purely improper, they are therefore alternable.

Based on these structures, we can construct examples of other states of interlocking. When
they are not re-alternable, the distribution table does not contain any entirely positive or
negative lines. The existence of these non-alternating cases, which cannot therefore be
represented by a non-node, is confirmed by calculation. This existence is due to a
combinatorial constraint that applies to the distribution of positive and negative signs.
They appear without interruption but are non-alternating, and they offer the minimum
number of crossings if these are counted in absolute value regardless of orientation.

They are purely improper. Here is an example:



~
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Fig. 44

accompanied by a table showing its entanglement

status.

5] + ST + 82 + IT - IZ + TZ = +4
-8 - 8T - 82 +JT - JZ + TZ= -2
-5] + 85T + 5Z - JT + 1Z + TZ = +2
5] - 8T + 82 - IT - 1Z - TZ -2
51 + 8T - §Z2 + IT + JZ& - TZ + 2
5] = 8T = 8Z - JT + 12 + TZ = 0
-8] + 8T - 82 - IT - J& - TZ = -4
-5 - 8T + 82 + IT + JZ - TZ = 0

However, we can use Gordian movements to construct alternate versions of these various
states of intertwining. In this case, they present a break due to the alternation, and these
prototypes are therefore not non-knots. They offer the minimum number of alternate
crossings and are purely improper.

In the previous case, for example, we obtain the following alternating presentation.



Fig. 45
We will call this type of example a minimal alternating presentation.

Consequently, we can construct examples of each entanglement state. Starting with four
circles, there will be two non-knots and non-alternating cases without breaks, the latter of
which can be re-alternated by means of a break.

This fact justifies that we cannot speak of a theory of non-knots for the theory of linkings
when the number of circles is greater than or equal to four.

But in all cases, we obtain alternating presentations of the distribution of link numbers,
which we choose as an exemplary case of the distribution.

Starting with four circles, the knot is no longer a cut accomplishment, since this is also the
case for certain entanglement states.

There is therefore a difference between three and four, since all exemplary cases of order
less than or equal to three are non-knots (alternating), and the first exemplary alternating
case presenting a necessary cut appears at order four.

3. Return to the theory of dimension and the completion of the cut

The necessary presence of the cut from four circles onwards, in the exemplary alternating
presentations of certain states of entanglement, is an indication linked to the dimension of
the space in which the circles are immersed. Working in three dimensions, a crowding

effect occurs from four circles onwards.

The dimension of space



This gives rise to a new definition of the dimension of space. A space is said to be three-
dimensional when, starting with four circles (each one-dimensional), it no longer admits a
theory of non-knots.

This can be expressed in another way, by comparing this fact to the impossibility of
immersing the projective plane in three-dimensional space.

We can consider the cut necessary for the realternation of four-chain links as a singularity,
which reveals a knot, analogous to the immersion line or the hole in non-orientable
surfaces.

Indeed, we know how fo immerse these non-orientable surfaces in three dimensions, using
a line of multiple points, known as an immersion line; this is the cross-cap, for example:

Cross-cap Bande de Moebius

Deux présentations du plan

projectif en dimension trois. Fig. 46

Or we can also immerse them in three-dimensional space using a hole that can be
imagined as a surface break. This is the Mobius strip, if we stick with the same example.
In the case of the projective plane, a hole transforms it into a Mbius strip.

The immersion line or this immersion hole are characteristic singularities required by the
representation of these surfaces in three dimensions.

This observation can be linked to a new function of the cut made by the knot up to three
loops.

The first function of the knot, revealed by the cut, produces the multiplicity of embeddings
of the entanglements regardless of the number of loops. This function still exists in three
plus one dimensions, as proven by chains that cannot be undone by homotopies, but it is
more reduced there. This is accessible to us because the theory of knots and chains up to
homotopy in three dimensions is a model of the theory of these objects in four dimensions.



Thus, the new cut function ensures the embedding of certain linkages starting from four
circles in three dimensions.

We want proof of this in the fact that the completion of the cut already slips in from three
circles in the dual presentation of non-knots, whereas non-knots of two circles do not even
require a cut in the dual presentation. Thus, the knot revealed by the cut begins to appear,
in the dual of non-knots, starting from three.

Similarly, starting with two circles, uncut chains containing knots always see the knot
undo itself by homotopy. These chains are also non-knots, but are not standard. We will
specify at the end of this book in which theory this singularity disappears.

The number of circles and the completion of the cut are inversely proportional.

In surface theory, the two remarkable singularities of the presentation of the projective
plane are:

— on the one hand, the immersion line required by this immersion (cross-cap), or the hole
required by the embedding (Moebius strip).

Cross-cap Bande de Mcebius

Deux presentations du plan projectif
avec sa coupure (ligne sans point)
Fig. 47

— on the other hand, the line without a point Z characteristic of the structure.
Thus, in knot theory, these two remarkable singularities of the presentation of the
projective plane are homogenized by the cut of the span surface of the chains from four

circles.

It is clear that this deserves further elaboration, since here lies the main reason Lacan
encountered for moving from the topological surfaces



intrinsic to the knot. This reason concerns the homogenization of the phallic function, the
horror of castration as opposed to its representation.

We will return to these questions later, but for now we refer to the theory of chains in four
dimensions (codimension three), studied by Milnor and explored by P. Soury in the case of
a theory in three dimensions admitting only homotopy in addition to Reidemeister
movements (TH), and to the work of M. Bertheux, who expanded on all of their results.

4. Exercises

el - Non-knots as comb cuts

What is the knot obtained by cutting the following 4-comb:

S

Change the presentation of the last drawing.

Fig. a

Based on this result, describe the relationship between these two chains in terms of comb
cuts.

6

Can you find the relationship between these two chains in terms of comb cuts?

Fig. b
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Generalization: from which comb does this non-knot originate, and through which transverse cuts?

Fig. c

Fig.d
€2 - Pure nodes as cut nodes connected by straps.

What is the relationship between these two nodes?

Fig. e



Chapter VI
The work of the knot

Most attempts made to date to elucidate the problems of the knot have focused on what is
known as the variety of objects, as provided by the complementary space around string
constructions, and have sought to classify these varieties in three dimensions. Even when
they abandoned classification, they still relied on these immersions, with Seifert surfaces,
for example.

We are the only ones to have taken into account something else noted in what preoccupied
Lacan with hesitation and determination in those earlier periods: for us, between the
embedding and the results reached by our study, new nodal material must be inserted, the
piecewise-oriented span surfaces, or colorings, highlighted by our reading process. It is
from these colorings in the minimal presentation of the alternable cases of one to three
circles—with an inversion in the non-alternable cases—and not from the varieties that we
seek the solution.

This means that we have a new task ahead of us. We must investigate the relationships
between the different parts, cut and non-cut, more precisely between their components, in
the minimal presentations of the alternate cases of one to three circles first, and examine the
mode of composition by which these are assembled with those, without forgetting the non-
alternate cases and the fact of immersion.

The minimal presentations of the flattenings and the nodal embeddings appear to us as two
registers of the same facts in two different realizations; or rather, the minimal presentation
appears to us as a graphical description, in relation to the two-dimensional, of the nodal
embeddings in three dimensions, in another mode of inscription, whose features and
algebra we will only be able to know once we have compared the transcription and the
embedding.

I grasp the embeddings intuitively as soon as they are drawn. The minimal presentation of
the alternable node is found heuristically. Its features must be determined successively in
the graphical description of the alternating presentations, when it exists. We will obviously
be mistaken if we want to read these descriptions as nodal and not according to their
graphical dimension.

Suppose I look at space as having reduced constraints; it represents a void whose vastness
we perceive and within which we believe we can move freely, etc. I could state that in this
set, its different parts have no qualities of their own that differ from the set.

I will only be able to judge space accurately when I give up trying to assess the whole and
the parts in this way. I will endeavor to replace each graphic description with a knot or a
chain which, for a reason summarized in Reidemeister's movements, can be represented by
this graphic presentation. Articulated in this way, the presentations will no longer be devoid
of nodal dimension, but will be able to explain some knot or entanglement.



The knot is determined by space just as it determines space; better still, it opens us up to
properties of space that we could not imagine or conceive without it.

It seems to us that there are only two ways to circulate in space, to pass through it, either in
the manner of entanglement (intrinsic chain) or in the manner of the knot.

As Lacan puts it: in entanglement, which forms a chain, one circle uses the hole of another
circle; in the knot, none of the circles uses the hole of another circle [2 Sem XXII, lesson
15.05.75].

Our predecessors made the mistake of wanting to interpret space as a uniform container.
That is why it appeared to them to be multiple and indeterminate.

The graphic work of the knot is a work of composing simple elements together. It provides
a description.

The nodal work of the node is a work of composition between simple movements. It gives a
topology.

In graphic terms, it consists of composing the node parts and non-node parts of alternating
nodes using a tool called the Terrasson graph, which will be defined shortly.

This brings us to the concept of regular assembly. A regular assembly is a composite, using
a specific application of the Terrasson graph, of cut nodes and combs.

Any case of a node or chain that is not a regular assembly is a compound, according to the
same assembly process, known as the regular process, of pure nodes and non-nodes. Or, to
put it another way, any case is obtained from a regular assembly by cross-sections, either
ribbon straps or cross-cuts as discussed in the previous chapter and as the Terrasson graph
will allow us to specify the definition, performed respectively in the node parts and non-
node parts of the regular assembly.

In the nodal register, the work consists of the action of proper (homotopies) and improper
Gordian movements on the non-knots that represent the different states of the
entanglements. This results in a numbering of the cut part, which corresponds to the
number of knots, and of the non-cut part containing the numbering of the entanglements, in
terms of the non-knot contained, for a particular coloring.

From here, a unique coloring can be assigned to each chain presentation containing
interlacing. This is the coloring that corresponds to the non-node content with its uncut
coloring. Clean nodes do not contain non-nodes, but they only have one coloring, except
for a color inversion. Chain nodes will have several cuts, but they will have the same
number.



We can therefore talk about the uniqueness of the cut number, definitively solving the
problem of cut variation, i.e., the use of object orientation by the characteristic of crossings,
thus approaching the solution we want to give to the treatment of interlacing in the rest of
this book. We will clarify this in the last chapter.

I. Graphical description
0. Terrasson's graph
al - Definition

In a given flat diagram, we mark the areas distinguished by the first step of our algorithm
with solid points (black dots) and empty points (white dots). Remember that this first step
of the algorithm resulted in the distinction between so-called full areas and so-called empty
areas. These points are the vertices of the Terrasson graph. Maintaining the distinction
established between these vertices, we join them with edges that cross, in a straightforward
manner, each arc fraction adjacent to each area.

Le graphe de Terrasson d'un schéma plat Fig.1

This gives us the Terrasson graph for the given presentation.



Le graphe de Terrasson d'un schéma plat Fig 2
1g.

Each edge thus connects a black point to a white point. The Terrasson graph is an even-
valency graph (even number of vertices) that alternates between solid vertices and empty
vertices, which we represent by these black and white points, respectively.

We will also sometimes refer to this type of graph associated with a presentation as a T-graph.

The set of vertices of this new graph is the union of the sets of vertices of the two graphs,
which are dual to each other: the graph of solids and the graph of voids. We defined them
in Chapter IV and here we give the examples attached to this presentation of a 2-chain that
we are using as an example.

Graphe des pleins Graphe des vides Fig. 3

It is quite certain that the reader may encounter difficulties in distinguishing between these
three different graphs, which have elements in common. This is the case with the T-graph,
since we take into account the set of vertices of these two graphs to form the latter. In the
T-graph, we continue to distinguish their respective vertices as solid points and empty
points.



But this is not the case for these two graphs, the solid graph and the empty graph. They are
disjoint—they have no common elements and are dual to each other (see Chapter IV).

In these three graphs, the edges are always different.
The Terrasson graph is not a composite of the full graph and the empty graph.
In the rest of our study, we mainly use subgraphs of this Terrasson graph. Here are some

examples where the span area is only determined by the first step of our algorithm, before
being colored.

Un cycle du T-graphe Un chemin du T-graphe

Fig. 4

Here are other examples where the span surface is colored by the other steps of our
algorithm.

Deux chemins non Un cycle du T-graphe Un arbre du T-graphe
connexes du T-graphe

Fig. 5



These portions of graphs will be used to compose and decompose node or chain
presentations. They will also be used to perform transformations on object presentations.
This is done while always taking into account the existence of any possible colorings of the
object.

This graph and its logic will help us clarify the definitions of what we are accomplishing
with these presentations, show the sometimes surprising unity of the actions to be
performed according to the needs produced by these objects, and gain greater confidence in
the practice of flat patterns.

a2 - Punches

A punch is delimited by a cycle of the Terrasson graph in the presentation of an object. This
cycle is the edge of the punch.

In the example of the Borromean ring, we can break it down into two parts using a cycle
that separates it into two punches. Any colored presentation can be broken down into its cut
part and its non-cut part. Each of these parts can be made up of several components. Here
we give an example where the cut part and the non-cut part consist of only one component
each.

Fig.6

A component of the cutout part can be presented in its punch by deformation on the sphere.
We obtain the punch object delimited by its edge extracted from the Terrasson graph.



Fig.7

Punches always have an even number of vertices, alternating between solid vertices (black
dots) and empty vertices (white dots). Here, our two examples show the presence of six
punches, the characteristic of the punch being given by the number of vertices, which
equals the number of edges of the punch's edge.

The punch is an object that generalizes the notion of entanglement (tangle), well known
since Conway integrated it into a calculation [18. b, pp. 59-69], unfortunately too restricted
to cover the multiplicity of chains and knots. The closure of tangles also presents a
difficulty that will be resolved later by our graphical descriptionl.

The 4-punch

The 4-punch has two empty vertices and two full vertices. It is the smallest punch we will
have to consider in the work of the knot.

It should be noted that at the extreme of its decomposition by Terrasson's graph, a knot
consists of 4-punchings, each surrounding a crossing.

When we distinguish between solids and voids, there are two types of 4-punch patterns
containing only one intersection. Note that the twist, depending on the opposition between
solids and voids, is produced here by the vertices of the punch edge.

t=+1 t=-1
Fig. 8

With coloring that takes into account the characteristic of the crossings, there are four types
of elementary 4-punctures:
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(+1, +1) (=1, +1)
(+1,-1) (-1,-1)

Fig.9

These different types of crossings, now identified by a punch, have already been studied in
Chapter 3.

Still using the 4-punch, we can resort to other decompositions separating a larger aggregate
of crossings.

This node ¢3 can be divided into two 4-punctures by a cycle extracted from its T-graph.

Fig. 10

Here we can clearly see that the cut and non-cut parts of the object are delimited by cycles
in the Terrasson graph.

However, we can use 2n-punctures for any integer n.
2n-pins

A 2n-puncture is delimited by a cycle of the T-graph with n full vertices and n empty
vertices.



Let's return to the presentation of the object we gave as an example:

Fig. 11

It can be broken down into two 6-punches containing the non-cut part and the cut part
respectively:

Fig. 12

The number 2n, which designates this type of object, is given by the number of vertices
carried by the cycle that forms the edge of the punch. This is the definition of this type of
object.

The presentation of the second punch is different from that of the first.

In the first case, the area outside the punch, delimited by its edge extracted from the T-
graph, contains the point at infinity of the plane.

In the second case, this point at infinity is inside the punch.

But this difference only persists if we consider our drawings traced on the infinite plane
(the interior of the disk); it disappears as a difference if we consider our drawings traced on
the sphere (the completed plane), of which, of course, we are only looking at one location.
This is the



question we have already encountered and dealt with in connection with the duality of span
surfaces and dual presentations in Chapter I'V.

Through a kind of zero-order topological change of presentation on the sphere—which we
will call the reversal of the punch—we find the presentation of the punch that we gave
above:

Fig. 13

This transformation, which reverses the punches, is necessary for the composition we are
now going to study. Now that we have finished presenting the 2n punches, we can learn
how to compose them together.

1. Composition modes
Ve already encountered a composition mode in Chapter IV when it seemed necessary to

create the compound s1# 27! #s2as (si#s2 ' )#sporassi#(S- 2
I # s2) in order to demonstrate the reciprocal implication of two binary relations.

Fig. 14



Here, we want to identify, among other comparable modes, and define more rigorously, this
mode of composition that connects the different rounds of two chains with ribbons. We
denote this composition with the character # (hash) in this example.

We now add to this character a number #, that specifies the degree of connection between
the two objects. In our example, this is #, (s1 # s2' ) # s2. This index corresponds to the
number of ribbons used in this particular mode of composition. It will not always be
possible to refer to the number of ribbons to define the degree of such a composition, so we
define it in another way.

Admittedly, without claiming to obtain a well-known algebraic structure, such as a
groupoid, a group, or a ring, or even a field, we extend this type of composition here
because we want to specify the topological structure specific to these objects.

These standard algebraic structures come from number theory and geometry because of the
prominent role played by group structure; we explained this in a previous work2. When we
talk about topological structure, we are indeed placing ourselves in the context of these
algebraic structures, in terms of categories, so to speak.

We will return to this composition of two objects by several ribbons in order to define a
relationship between the objects.

We want to give a more precise definition of this mode of composition and show what
more general modes it opens up.

a0 - Definition of composition

We perform our assemblies by following subgraphs of the Terrasson graph of each of the
objects to be composed. This involves producing composable elements based on the edges
and vertices of the T-graph and performing two openings and a punch reversal from these
components. Composition is always performed according to a tree taken from the T-graph
of each component. A tree is a graph in which the removal of any of its edges separates it
into two unconnected components. The resulting composition is always performed
according to a cycle of the T-graph of the composed object. A cycle is a closed path.

Let's take an example with the composition of these two objects.



S S
Fig. 15

Determining the characteristics of the composition

We choose a connected subgraph from the Terrasson graphs of each of the objects to be
composed. This subgraph must be a tree, as we have just mentioned.

S avec le sous-graphe x = p S’ avec le sous-graphe x' = v Fig. 16

In the example we have chosen here, we have two extreme cases of trees. These are star
trees around a single point, which represent special cases.

These subgraphs must have the same number of edges. This number # defines the degree of
composition. Here, n is equal to 3. We will therefore refer to 3-composition, and more
generally to n-composition.

The respective shape of each subgraph, denoted x and x', specifies the mode of
composition. We denote the node S accompanied by x either before or after the letter that
designates the object S in question, depending on its place in the composition of the two
objects:



S x#nx S
Here, the first subgraph is a star subgraph around a full vertex, which we denote p. The

second is a star subgraph around an empty vertex, which we denote v. We therefore denote
the composition we are now performing as:

S p#nv S’
Opening the punches

We open the punches by splitting the edges and multiplying the intermediate vertices. The
vertices at the ends of the edges remain unchanged.

Fig.17

Let's do the same with the other object to be composed:
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We obtain two 2n-punches. Here, 6-punches.

Fig. 18

Flipping a punch

One of these punches must be turned over by continuously deforming the sphere so that one
of them is positioned in such a way that it can be placed in the open area of the other.

o A

To deal with this reversal, simply refer to Chapter IV, where we discuss the duality of
presentations on the sphere3.

Fig. 19

Actual composition of the two punches

We can thus fit these two objects together, with a slight rotation, respecting the solids and
voids and the coloring of each of them, if applicable.



Fig. 20
This composition is done according to a cycle of the T-graph of the composite

object. Removing this cycle, we have constructed the object denoted sp#3 v S'":

Fig. 21

This object is still a node or a chain; it is indeed a mode of composition internal to the
multiplicity of these objects.

Having defined composition in its most general form, with the help of an example, let us
now consider specific cases of these modes of composition in order to rediscover the
intuitive montages we were already practicing. We will then specify a main assembly mode
for describing all objects based on the objects that constitute the source of this description.
These generating elements were presented in the previous chapter. They are cut nodes and
combs, two families that are dual to each other.

al - 2-composition
2-composition is defined by two consecutive edges in the Terrasson graph of objects that

are assembled together. These two consecutive edges form the simplest case of a star tree.
At degree two, there is no other tree. This portion of the graph



always has three vertices, and the middle vertex will be used to characterize the
composition, as it is either a full vertex or an empty vertex. When the punch is opened, it
gives rise to a 4-punch.

There are four modes of 2-composition
The general form of the 2-composition is:
Sx#mx S’

We may also write it as:

Sx#x2S

where x2 and x'2 denote pairs of connected edges, isolated in the T-graph of the objects to
be composed.

There are only two types of such pairs for a given object. This explains why there are only
four modes of 2-composition.

In order to clearly define these two types of connections for each object, let's illustrate their
differences using the example of the cloverleaf node. If we consider two successive edges
of the Terrasson graph of the cloverleaf node, there are only two possibilities:

en dérivation en seérie
Fig. 22

In the first case, the intermediate vertex between the two edges of the graph is a void
vertex. In the second case, the intermediate vertex is a full vertex.

In the case of 2-composition, if the intermediate vertex is a void vertex, we say that the
composition is done on that side by derivation. We can write X = a2 to denote this
derivation, or x = v2 to denote the void point.



Otherwise, the vertex is a full vertex and we will say that the composition is then done in
series on the side of this object. It will be written as x = sz for the series mode or x
= p2 for the median full point.

It is noteworthy, from the outset, that these two modes are dual to each other; they
interchange during the duality of the object produced by the composition in question.

Let us give a first example of a 2-composition, when the two composite objects are
connected in parallel, i.e.:

Sa#aS

An intuitive concept with precision

Let's choose some very basic objects such as the clover T and the simple entanglement
E. We will therefore perform the assembly:

Ta#awE

Let's start by choosing a 2-graph that corresponds to this mode of composition in each of
these two objects:

T d, d, E
Fig. 23

Let's open the punch for the first object to be composed.
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Fig. 24

We continuously deform the knot thus opened to reveal portions of ribbon by playing with
the presentation, without changing anything in the knotting or the order structure of the
punched object along the cycle that forms its edge.

Let's open the punch of the second object:

Fig. 25

Let's turn this punch over to obtain a punch that lends itself to the composition and
surrounds the intertwining.

e ®

We also distort the presentation of the punch to show portions of the ribbon in this type of
assembly.

Fig. 26

We now have two objects that are easy to assemble together.
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All that remains is to actually assemble them.

Fig. 27

Td,#d,E

Fig. 28
to see that by carefully following the different steps that define these methods of assembly,

we obtain a construction that clarifies, by defining it more precisely, the example of
intuitive assembly using straps or fabric ribbons.

Fig. 29

With movements of zero degree, these two presentations show the same object. They are
equivalent.



Fig. 30

It is important to note that we have presented the 2-composition so far with uncolored
surfaces. If the assembly, the tracing of the portion of Terrasson's graph that we use,
respects these colorings, separating the node part and the non-node part, things can become
even more precise.

Let's give an example of a 2-composition (S a2 # s2 S') starting from the clover and its dual.
Second example
Let us take a cloverleaf node that we are preparing to be assembled by the 2-composition in

derivation T4z and its dual presentation inverted with respect to the crossings T' = T*—1 that
we are preparing to assemble in series T's2:

T dz S? T

Fig. 31

By opening the punches, which are retracted here on their respective edges, producing the
two edges of the Terrasson graph of the starting node, we can compose them together.
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To do this, we flip the punch of one of the two, here the dual of the clover assembled in
series.

(578

Fig. 33

Fig. 32

Then we assemble along the valence four cycle, characteristic of 2-composition, to obtain
the composition T a2 # s2 T":

Fig. 34

After these two examples of 2-composition, which remains the simplest form, let's return to
the general case.



a2 - Multi-composition

As there are 2-compositions, which have just been defined and presented with examples,
there are many modes of multiple composition or multi-composition, referred to as n-
compositions.

Let's consider a tree extracted from Terrasson's diagram, i.e., a subgraph that does not
contain any cycles. If this tree has a number of edges equal to n, we will refer to it as an n-

tree extracted from Terrasson's graph.

Here is a path of three edges:

Bo 13

Fig. 35

This portion of the T-graph takes us from the periphery to the interior of the node in a path
comparable to the movement of a knight in chess.

This is precisely the image Freud uses, starting with his studies on hysteria [1. f], when he
wants to explain how work progresses in analysis. It is at this point in his text that he states
the general law establishing the increase in resistance as inversely proportional to the
distance separating the subject from what he calls, at the time, the pathogenic nucleus. The
elements of the material gathered by analysis are, he says, like files arranged in rows
around this nucleus. Through these rows, progress is made in a manner similar to the
movement of a knight in chess.

We mean only one thing, as in the case of the montage of the drive, the libido, and desire,
discussed in Chapter II. Why not consider, at the outset, that this presentation of spatial
constraints is specific to allowing us to follow what Freud and Lacan say about this other
scene? This place, it must be said, we could not find without them, and it is very difficult to
establish its laws. Whether it is a model or the thing itself is another question. To answer it,
we must not forget that in terms of the knot, we are still in the exploratory phase, even if
this allows us to begin to formulate some constraints that apply in such a place.



If we return to our multi-composition example and open the punch defined by the
duplication of the edges of this n-tree and its intermediate points, we obtain a 2n-punch.

Here, from a 3-tree, a 6-punch:

Fig. 36
This process, in the example of a 3-composition, allows us to define the multi-composition
that can develop according to various tree structures, as a generalization of the 2-
composition. In this case, we will refer to an n-tree of the n-composition, of which we will

give other characteristic examples.

Let us open and turn such a punch:

&0l

Fig. 37

By combining these two objects from the same node, the open punch and the punch turned
over and then rotated by half a turn, we obtain an example of a new assembly mode
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Fig. 38
There are two n-compositions that are of particular interest to us. Among the variety of n-
compositions that follow the variety of trees with n edges, we will focus on the two extreme
modes of composition that are characterized by strict star trees.

a3 - The two extreme multi-compositions

At the extremes of n-composition possibilities, as with two-composition, there is the mode
of derivative n-composition and the mode of serial n-composition.

The serial n-composition is characterized by an n-star tree whose central vertex is a full
point. We denote it by ssn OT Spn.

Derivative n-composition is characterized by an n-star tree whose central vertex is a void
point. We denote it Sdnou svn.



3-composition en série 3-composition en dérivation
Fig. 39

The n-composition derivation mode respects the coloring of non-nodes. The n-composition
series mode respects the coloring of pure nodes.

Fig. 40

We have already used these composition modes in the first example of assembly that we
gave when introducing this practice. We will use them to complete the description,
according to the mode of regular assemblies, of how any object in the theory is constructed.

These drawings can be continuously distorted at will. The portion of Terrasson's diagram
used has a structural value of invariance in that it precisely defines and highlights, for
reading, the mode of composition.

a4 - Composition in duality

Let us introduce an effective result from this descriptive part.



We call the dual presentation of a given object the presentation obtained from the
presentation of the given object, equipped with the dual surface and deformed in its dual
presentation. Note how the dual presentation of a given object produced by these modes of
composition then creates an assembly that can be deduced from the given assembly. It is
written by marking each term of the initial assembly with an asterisk.

We want to talk about the following distributivity:
(S xn # xn S’)>!< = (S* xn* # xn* S’*)

Provided that a duality relationship is defined between the portions of Terrasson's graph
that govern the montage. We want to say what xn* is, knowing xn.

With regard to this property of duality, we will refer to the Japanese reading of their
language, insofar as it gives rise to a permanent double interpretation, simplified here from
a rhetorical point of view but transposed between the voice and the gaze.

Let's give some examples where the relationship between xn* and xn is easy to establish.
Starting with 2-composition, there is duality between derivation composition and series
composition.

d2*=gand 2% =@

If we return to the example (T a2# a2 E),

Fig. 41

It will be written, if we denote T* as the dual presentation of the clover T and E* as the
dual presentation of the entanglement E:

(T* 2 # 2 E*)

The dual presentation is thus obtained by duality:



Fig. 42

And this can be shown from the definitions of these modes of composition:
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Fig. 43

And gives rise, in the figure, to a direct reading of duality, which is an excellent exercise in
constant double interpretation.

The following example shows self-duality. It is the question of the amphicherality of
certain objects.

If we return to the case presented above (T a2 # a2 T*), it gives node 63 in the classic table:



Fig. 44

which is constructed from these two components, which are two dual openings of the trefoil
node:

Fig. 45
We obtain:
(T a2 # 2 T*)* = (T* az= # 2+ T*¥)
However, we advance, without having demonstrated it here, that:
T* a2+ = T* 2 and that s2+ T** = 2 T
That is, we would obtain by duality:
(T*2# a2 T)
The reader can verify this by switching to the dual presentation and decomposing the object

according to the T-graph cycle that separates the cut and non-cut parts of the resulting
object.



It should therefore be noted that, in this case, we obtain the same thing, except for duality,
by means of a change in torsion.

It should be noted that the notation for the composition of two objects is
commutative: (T* 2#2T) = (T 2# 2 T*)

We call this situation, which will seem less and less surprising in our description,
autoduality, except for a reversal of the torsion signs. This can be compared with what has
been called amphicheral knots in the literature dealing with knots since Tait.

Let's give one last example with multi-composition, using the first example showing a 3-
series composition, s3, and a 3-derivation composition, 43. We defined them above and
called them the extreme modes of n-composition.

They are dual to each other in the general case:

dn*=snand sn* = dn

Fig. 46

and make it easy to predict the dual configuration of such an assembly. These two extreme
modes, combined in a type of assembly of specific elements, will help us to advance in the
graphical description of our objects. We will now deal with assemblies of any node part
with any non-node part.

2. Regular assemblies
In the examples given above, we can be more specific.
For a given coloring, in each case, when it comes to the exact separation of the components

of the cut part and the non-cut part, related to the coloring, the source material of the object
forming these parts comes from pure nodes and non-nodes.



This is the case in the first example of a montage that we gave. We also recomposed node
63, from the clover and its inverted dual presentation, when we wanted to give an example
of two compositions following a coloring and the determination of different parts that it
produces in a given object:

Fig. 47

These two examples are montages that display regularity. To make this apparent to the
reader and formulate its definition, we will define a class of objects.

We will call objects of this type regular montages, since they are the prototypical examples
of such montages. In relation to this family, we will be able to situate any of the other
objects that we intend to theorize about. From now on, this will be the definition of these
objects.

al - Definition

A regular montage, as we designate an object by this name, is a compound of combs and
cut nodes?, following T-graph cycles, in such a way that the components are assembled
exclusively according to the extreme modes of n-composition:

(nC dn# sn Pe)

— the cut nodes are composed according to the mode of n-composition in derivation. The
graph is star-shaped around a void point,

— the combs are composed according to the series n-composition mode, the graph is star-
shaped around a full vertex.

Node ¢3 is a regular assembly:



Fig. 48

The other example, the first one we gave of composition, fig. 11, although assembled in a
regular manner, is not a regular assembly as an object. This means that it is not
characteristic of the type of assembly on which it depends; it is not part of the class we are
isolating. We will clarify further on, in fig. 80, what distinguishes it from the objects we
refer to here as regular montages.

Let's give an example of such regular assemblies when there is only one component with
regularly composed cut-off and non-cut-off parts.

Here is the regular circuit in question:

Fig. 49

Here are the components, one for each part:



o)

It is broken down into its two parts by a cycle in its T-graph.

Fig. 50

Fig. 51

A regular assembly forms an object whose node part and non-node part can be strictly
isolated as coming from a comb and a cut node.

ol

Fig. 52



To better understand this, let's detail the assembly procedure in this case. Let's open the
punches placed in the two sources.

First, the bypass punch in the cut node:

(sReh~

Fig. 53

Then the series punch in the comb:

54

We turn one of them over, the non-node in the figure above:

Fig. 55

We then place it in the space created in the cut knot by the opening of the punch in order to
form the desired regular assembly:



Fig. 56
This regular assembly reflects the composition of the node and non-node parts of any
object. To complete this description of alternating and non-alternating chains and nodes, we

still need to explain

— how regular assemblies can be compiled thanks to a remarkable property for each order
corresponding to the number of components of their node and non-node parts;

— how any object is obtained from such an assembly;

— Conversely, how can we always find the regular assembly corresponding to any object
colored by our algorithm?

First, let's look at two more examples of such regular montages, but this time with several
components with cut and non-cut parts, assembled regularly.

Other examples

First, let's take a case where there are two components with cut parts and one component
with non-cut parts.

Here are the three components:



Fig. 57

Here is the regular circuit in question; it is non-alternating:

Fig. 58

A regular assembly forms an object whose node parts and non-node parts can be strictly
isolated, such as combs and cut nodes. We will use it later in Fig. 88.

Third example

Let's return to our second example, where there is one cut component and two non-cut
components.



Fig. 59
Let's detail the assembly procedure in this case.

We open the punches placed in parallel in the cut node, in series in the two non-nodes.

Zhes

We reverse two of them, the non-nodes on either side of the figures above:

€ -

Fig. 60

Fig. 61



We then place them in the two spaces created in the cut node by opening the punches:

Fig. 62

This is done in order to form the desired regular non-alternating assembly.

Fig. 63
These regular assemblies reflect the composition of the node parts and non-node parts of
any node. We will explain this to complete this description of alternating and non-
alternating chains and nodes.
But first, we give an important property of regular assemblies. a2 - Remarkable

property of these assemblies

A regular assembly with two components, a node part and a non-node part, corresponds to
a three-strand braid, a 3-braid.



Fig. 64

This regular assembly of two components can be represented as a skein that shows this
correspondence; this skein presents it as a circular closure of a 3-braid.

Fig. 65

We can always establish this correspondence between a regular assembly of two
components and a 3-braid. It suffices to note that the definition of the regular assembly of
these two components ensures the existence of two extreme points that are easy to define
and a path that joins them.

Fig. 66



There is a full point in the Terrasson graph in a full area of the non-node component, which
was not used when assembling the comb; this full area is monochrome in the non-node part.

There is a void point in the Terrasson graph in an empty area of the cut node piece, which
was not used during regular assembly; this empty area is surrounded by the cut in the node

part.

In this case, we will call this solid area the central area, and the empty area the peripheral
area.

The shortest paths connecting the point in the central filled area to the point in the
peripheral area in Terrasson's graph are always the same length.

In the case of two components, it consists of three edges.

All that remains is to change the presentation of the regular assembly, using topological
deformations of degree zero based on this fragment of the T-graph.

Frig. 67

If we open this subgraph to form the edge of a punch, as we have learned to do since we
turned it over to form the punch, the braid is then perfectly defined, enclosed in this punch,
as a regulated object.

Fig. 68

Thus, in order to form the skein that reveals the braid defined by the regular assembly, it is
sufficient to know how to find the central point and the peripheral point. We hope that the
way in which



we have described them above will be sufficient for the reader to learn how to find their
way around these drawings by practicing this determination.

Conversely, any three-strand braid closed in a circular manner produces a regular pattern
made up of two parts, a knotted part and a non-knotted part.

Fig. 69

This construction process does not exactly determine the number of circles in the regular
assembly produced. It will consist of one, two, or three circles at most.

The closure in a skein is not so strict either; the closure of the braid can be designed
differently to give other presentations of the object. But the skein is always present, with
duality, on the sphere.

Fig. 70
This result, demonstrated by construction, which is always feasible, can be extended to give
rise to a principle that matches the number of parts to the number of strands in the
associated braid.
a3 - Extension to n parts, n + 1 braids
Any regular assembly made up of n components corresponds to an (n + 1)-braid.
We can make the same observation when the regular assembly has more than two parts.

There are always two extreme parts of the regular assembly that allow us to find the central
point and the peripheral point.



Fig. 71

There are always two points (solid or empty) marking two areas of two components that
have not been used by the assembly. We call these the extreme parts of this assembly. For
example, a regular assembly consisting of three parts corresponds to a 4-braid.

Three parts comprising a regular assembly, if taken separately from the cut nodes and
combs, represent six specific areas. In each comb there are two solids, and in each cut node
there are two voids.

Four of these areas are used to regularly assemble the components in pairs, meaning that
the two outer areas are not used in the assembly. They refer to the outer parts. We advise
readers to check this method of counting on an actual assembly of several parts. An actual
assembly consists of assembling the parts using combs and cut nodes.

All minimum paths connecting the extreme parts have the same number of edges. When
there are n components, the minimum paths are of length (number of edges) n + 1.

Here is a suggestion for such a path in the chosen example:

Fig. 72



In fact, in the case of this 3-assembly, one of the shortest paths in the Terrasson graph goes
from one extreme point to another, has four edges, and necessarily crosses four arcs. The
same is true for the rest.

We are therefore dealing with a 4-braid here, and in the general case of an n-assembly, it
will be an (n + 1)-braid.

Since regular montages of n parts alternately nodes and non-nodes are (n
+ 1)-braids, they can be compiled and described exhaustively for each order marked by this
number n.

In the table on the following page, we give some examples of regular weaves made of two
parts obtained by braiding three strands.

We leave the compilation of braids in the case of three, four... n strands for separate studies
outside this work, but we should point out that they must be carried out based on the
permutation groups of n objects, usually denoted sx, in each case.

N-braids give m-chains, counting m rounds with m < n.

Armed with this object, the regular assembly, characteristic of the assembly that governs
the construction of any object we are theorizing about, we now turn to the description of a
general and arbitrary case of an alternating chain or knot, before generalizing to non-
alternating cases.

But first, let us table the first regular assemblies obtained from 3-braids






3. Transition from regular assemblies to arbitrary cases

In any case, a knot or chain is an assembly of pure knots and non-knots made according to
the regular assembly method we have just defined.

Pure nodes are composed in a mode known as derivation via a subgraph of the T-graph in a
star configuration around a void point. Non-nodes are composed in a mode known as series
via a subgraph of the T-graph in a star configuration around a solid point.

In the previous chapter, we established that any pure node comes from a cut node by adding
cross-connections to it. Similarly, we established that any non-node is obtained from a

comb by making cross-cuts in it.

Consequently, any node or chain can be obtained from a regular assembly on which we
make cross-sections that can be isolated in its components.

al - Let's add the cross sections

Let's take another example of a regular assembly we have already seen and make four cross
sections, two for each part.

Fig. 73

We modify its presentation by zero-order movements in order to obtain a case that presents
all the desired generality of any object.



Fig. 74

There is therefore a relationship in our graphical description of objects between this regular
assembly and this least specific case.

Conversely, any object can always be related to a regular assembly. This is what we want
to show now, starting by clarifying this relationship.

a2 - Let's formalize the cross sections

The cross sections we have been discussing since the previous chapter can be formalized
graphically as transformations of the Terrasson graph.

Cross sections are openings and closings of portions of two edges of the T-graph. Or, to put
it another way, they are inversions modulo a 4-punch, in the sense that we will specify, of

such pairs of edges.

For a transverse cut, the midpoint between the two starting edges is, in this case, a full
vertex.

Fig. 75 The

inversion causes the midpoint of the transformation result to be a void point.



i Fig. 76

This also applies to a transverse ramp in a dual manner:

>¢ 3¢ K

The midpoint between the two starting edges is a void vertex. The inversion of the punch
causes the midpoint of the transformation result to be a solid point. This is indeed the
inverse transformation of the previous one.

Fig. 77

Fig. 78

It is therefore necessary to construct a category of Terrasson graphs and their
transformations.

a3 - Let us return to the description of any case

Consequently, any case of a node or chain will be obtained from a regular assembly of
multiple components on which we invert punches.



In our previous example, we mark the portions of the T-graph made up of two edges that
will give rise to the inversion of the punches.

Let's invert the punches as we have just shown:

eB

This gives us an arbitrary object that does not have the characteristic of regular assemblies,
i.e., being composed exclusively of cut nodes and combs. Since the regular assembly shows
us how the parts are composed, in the specific case of the comb and the cut node

Fig. 80

We can assemble the cut parts, made of pure nodes, with the non-cut parts made of non-
nodes, as the cut nodes and combs that make up a regular assembly are composed.



Fig. 81
These are indeed the same type of assemblies that we have called regular and which give
their names to the objects that represent them. The assembly is described using the

Terrasson graph cycle.

We open the punches in a similar way, on the side of the components with a cut:

Fig. 82
We do the same on the side of the components without cuts.

In addition, here we turn the edge of the punch in the same way:



Fig. 83
We thus show how a regular assembly gives the assembly principle for any case
This being established on a single example, it is important to demonstrate that we can move

from regular assembly to any case by means of transverse cuts to define the graphical
relationship that supports our description. This relationship and its inverse are as follows:

Fig.
84
If the cross sections are made between the node and non-node parts of the regular assembly,
1.e., they do not respect the cycles of the T-graph that separate these parts, we will refer to
another assembly. This means that there may be a set of cross sections between different
regular assemblies. But we know how to characterize the sections that correspond to a
regular assembly and any object.

These sections do not cross the cycle that forms the boundary of the regularly assembled punches.

Conversely, this encourages us to follow the reasoning that ensures we will always find the
regular assembly corresponding to any given case:

— since an object can always be broken down into node and non-node parts;

— that these parts are always pure knots and non-knots;



— that these pure nodes and non-nodes are always produced from cut nodes and combs by
cross sections. This is demonstrated in the previous chapter for non-nodes and applies in a
dual manner to pure nodes.

We then always obtain the regular assembly from which an object originates by applying
the same transformations in reverse.

Here is an example using the same relatively simple case (only two parts), but one that is
already quite general.

Fig. 85

We thus show how, from any case, we find the regular assembly that corresponds to it and
how any case can always be obtained from a regular assembly.

Let's give some more examples of non-alternating cases
Let's look at some other examples of this relationship between regular assembly and any
object. Here we see that several assemblies produce the same object, apart from a change in

color.

In the case of a regular assembly already constructed above in example fig. 63, these will
be transverse straps in the knot section:



Fig. 86

Conversely, we can reconstruct the regular assembly in question:

Fig. 87

In order to reconstruct the regular assembly, the part made up of a cut node is obtained
from any pure node by making transverse cuts.

And in the case of the other regular assembly constructed above, it is the transverse cuts in
the non-knot part that give the non-alternating chain, the knot of July 23, 1993, which we
have already discussed in previous chapters of this book:



DDE

Fig. 88

In the other direction, the part consisting of a comb in the corresponding regular assembly
is obtained from any non-knot by adding transverse straps:

Fig. 89
a4 - This is why there is complication

This is why there is complexity in knots and chains. We have shown that their richness and
complexity is due to the transverse cuts and ribbon straps in regular assemblies.

This complexity generally prevents any knot or chain from being presented as a tangle, as is
the case with what we have called regular assemblies, where there are no additional straps

or cuts.

This complexity prevents the theory of chains and knots from being directly reducible to
the theory of braids.

a5 - Non-alternating cases



Non-alternating cases are obtained from alternating cases by replacing crossings of the
given torsion with crossings of inverse torsion. This means that they follow the frames from
a graphical point of view.

They have additional nodal, plastic, and topological properties.

In conclusion, we can now answer the question about the closure of tangles that L.
Kauffman asked us at our home one evening after dinner. If we respect our colorings and,
under these conditions, decompose the objects according to the T-graph cycles that separate
the knotted and non-knotted parts of these objects, then there is always a way to close the

punches obtained, and it is unique, such that:

— the node parts turn out to be pure nodes mounted in series (closing the edge of the punch
gives a star graph around a void vertex);

— the non-node parts turn out to be non-nodes mounted in series (closing the edge of the
punch gives a star graph around a full vertex).

Now that this clarification has been made in the graphical description of the objects, let us
return to our TO theory of entanglements in order to continue developing the plastic, i.e.,
nodal, work of our object.

This work is entirely defined by the movements of the theory, the Reidemeister movements
augmented by improper and proper Gordian movements (homotopies) presented in Chapter

IV as a space of deformation specific to knots and which erase them.

It gives rise to a nodal description that has an arithmetic, i.e., numerical, translation, and we
want to discuss the graphic consequences of this in the reading of the drawings.

We now move on to the second part of this chapter.

I1. Nodal plasticity

0. Knots

al - Quantification of movements

Let us return to the set ko, defined in Chapter [V, of movements of different types:
teo= { B1, B1*, M2, T3, G, H, H* }

in an enumeration that we arrange in a table, as shown in Table 1 below.

We define an application f of this set in the numerical set {—1, 0, +1},



that is: p: ko= {-1, 0, +1}

This application assigns a numerical value to each movement, based on the number of
twists involved in the crossings. This basic calculation is summarized in Table 2 (see
following pages) accompanying the previous one.

Given a change in presentation § defined by the series (x1, x2, ..., Xi, ..., xn) With XiOE g,
we can define the set s of numbers in the series:

s={b,b* t, g h, h*}

such that each of them is the sum of the values of the movements of each type considered
in TE0.

Movements M2 correspond to a zero digit. Thus:

b=20¢(X;), b*=2X0(Xj), t=2 0 X;)
XiE Bl XiE B|* XiE T3

g=20(X), h=Xo0(X), h*=ZeX)
XiEG XiEH XiE H*
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We thus have an application F that maps each change in presentation $ to a set s of digits:

F($)=s
a2 - The number of knots

Given two presentations s1 and s> of a knot or string, equivalent by the relation ro, i.e., one
is the transform of the other by a change of presentation §, then

s2= $(s1)

We can describe the average number of cuts Z (s2) of one as being the average number of
cuts 2 (s1) of the other, increased by the number of knots s of the change in presentation:

2 ($(s1))=Z (s1) + ns



For a given span area, we have defined the dual span area obtained by exchanging solids
and voids.

Thus, we describe in the same way the average dual cut number X*(S') of one in terms of
the average dual cut number X*(S) of the other, and the dual knot number N*s of the
change in presentation that makes them correspond:

2*(8(s1)) = Z*(s1) + N
Knot expression

Given two presentations si and s» of a knot or link, one of which is the transform of the
other by the change of presentation § of encryption s, the number of knots ns and its dual nxs
are written as:

Ns=b+t+2(h+g)

Nxs=—Db* —t -2 (h*+ g)

This proposition can be demonstrated for each elementary case, based on the definition of
s, 1.e., its expression in terms of the number of crossings of each type, the effect of
elementary movements on the types of crossings, and taking into account the quantification
of these

movements.

Thus:
Z(8(Gs1)=Z(s1))+b+t+2(h+g)
*(8(s1) = Z*(s1) —b* —t -2 (h*+ g)
Quantification of our example

Let us return to the two extreme figures in the series of movements already encountered as
an example in Chapter [V:



S So

Fig. 90
This is the weighted series in plus and minus, given in Chapter I'V:

+G, + T3, M2, M2, - T3, M2, + T3, + T3, + T3,

-T3,-T3, M2, - B1, + T3, M2, + G, M2, 2 (M2),

2 (- T3),3 M2),4 (- T3),2 (M2), + B1,-B1)

The set of digits here is:

s={b,b* t, g, h,h*}={1,0,-4,+2,0,0}

On the other hand, we know from the calculation that:

2 (s1) =-2, and that ¢, =-5.

Similarly, by calculating in the dual, we obtain the value of £* (s1) = +3.

And we can establish ns= —1 and ~nxs= 0, based on our proposition and the numbers in set s:
Ns=bt+tt+2(h+g)=-1+(4)+20+2)=-1-4+4=-1
Nis=—b*¥—t—-2(h*+g)=0-(-4)-20+2)=+4-4=0

However, for the Olympic chain s, we have the following figures:

2 (s2) =3 and X* (s2) = 3.

So we can verify the last two formulas:



2 (s2) =2 (s1) t ns—

3=-2-1

Y*(s2) = Z*(s1) + N

+3=43+0

This is what we wanted to verify in this example.

It is therefore clear that, given that the averages of the cut numbers ss and s, which are
dual to each other and from the same presentation, are well defined, the knot numbers of
two different presentation changes between the same two given presentations are equal
term by term.

Invariance of the number of knots between two given presentations

Let there be two presentations si and s linked by two changes of presentation $ and $', with
respective encryptions s and s', then their respective numbers of knots are equal:

Ns = Ns’ N*s
= N*S’

From this encryption, we conclude a very general consideration which states that a
presentation s1 of an entanglement represents a series § of movements for another

presentation s> of the same entanglement. We summarize this formulation in the expression:

S1 — S2

$

and which we will use to deal with knots in their relation to the non-prototype knot of the
entanglements of one to three circles that we listed in the previous chapter in the section
devoted to nodal plasticity. We will then generalize these results to the theory of
entanglements of four or more circles.

1. Interpretation of xs

We will refer to the knot number ns and dual knot number nxs of a presentation S of a knot
or link, for r < 3, as the dual knot numbers of each other of any change of presentation that
transforms the non-knot so contained in this knot or link into this presentation S:



Ns= xs— 20
N#s = zxs — 2*0
knowing that £*0 = — X0 as we have just recalled.

We can thus interpret the average of the numbers of the cut of a presentation and its dual
number, using the formulas:

ss=b+2h+t+2g+ 59
E*S:—b*—Zh*—t—ZgJ"z*o

where s = {b, b*, t, g, h, h*} is the encryption of any change in presentation that transforms
sointo S.

Encryption of our example

Let's show this using the same example:

Fig. 91
If we consider the series from the previous example reversed,
$:50— S

we can establish the set s of its digits that separate and connect these two figures, by
repeating the series in reverse, or by marking the opposite signs:

s={b,b* t,g h h*} = {+1,0,+4,-2, 0,0}



We already know the respective averages of the numbers in the cut:
8=—2, 5+ =13, 50=— 3, zx0=+3

and the numbers of knots of § or S, except for the opposite signs: Ns =
+1, nxs= 0

This time, we will go from so to S, unlike the previous calculation where we went from g1 =
S to 2= so.

This reverse calculation gives the formulas for writing:
ss=Nstxo=+1+(=3)=-2
sss=Nrstzr0=0+ (+3) =13

or, more precisely, referring to the set s of numbers in the series leading from so to S, the
two formulas:

ss=b+t+2(g+h)+s=+1+4+2(-2+0)+(-3)=-2
sss=—b*—-t-2(g+h*)+50=0-(+4)-2(2+0)+3 =43
2. Node part, knot part, and non-node part

al - Knot part and non-knot part

In any representation of a knot or oriented chain using coloring, we can associate a number
of crossings that characterize them with the knot parts (parts where the cut passes) and the
non-knot parts (parts where the cut does not pass).

At the knot part, the number of cuts is iis.

At the non-node part, the number of cuts in the dual xs.

From the main corollary of our previous chapter, we know the expression of these numbers,
which accounts for the movement of the cut through the different colorings of the same
presentation:

kiST ZS— i

k*iS = Z*S— i

In our example:



Fig. 92

We have already verified these formulas for the different colorings, in the case where =i = —
3, and we calculated: ss = -2, to verify a little further on that is=+1, i.e.:

kis = £S — i,

as proposed by our main corollary. We can perform the same calculation in the dual where:
ks = 16 and zxs = +3

thus verifying that: k+is= sxs— 5= +3 — (-3) =+ 6.

Now we have just expressed the averages in terms of the number of knots, which are dual
to each other, and the number of intertwining independent of coloring:

s =Ns T 50

£*§ = N*s T £%0

Thus, the knot part and the non-knot part can be expressed in terms of the number of knots:
kiS = Ns T 20— =i

k*is = N*s T 5%0 — 5

However, what is verified by the number of cuts in any presentation is also verified by our
standard non-nodes. That is, if we call ko and ko the dual cuts of each other of these non-
nodes, for different colorings i:

ki0 = =0 — Zi



k*i0 = Z*0 — Xi

This therefore gives us the expression of the node part and the non-node part as a function
of the knots and any cuts in the non-node content:

kiS = Ns 1 ki0 k*is =
N*s 1 k0
Let's return to our example, in orientation i = 1. We calculate s = -3 and ixis = +2.

However, we know that ns= +1 and n*s= 0,

Fig. 93
ks=Nstkio,or—3=+1-4
and ks = Nxs+ kxip,or +2=0+2
a2 - Knotted part, non-knotted part, and Lacan part

Since we have chosen the non-knots in such a way that they have an uninterrupted
presentation, there is indeed a coloring i = 0 for which kio= koo = 0, and therefore k*00= —

In our example, the orientation i = 0 gives the cut kos = +1 and in the contained non-knot koo
= (), since there is no cut:
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Therefore, we are assured that there exists a coloring i = 0 such that for any presentation, its
node part is:

kOS = Ns

We will call this the knot part of the given presentation; it is its cut part in the coloring i =
0.

Hence the explanation for our choice to call the part where the cut passes the knot part. Our
initial intuition was not wrong, since we can support it with the existence of this coloring i
= 0, in which case it corresponds to the knot part. The point to emphasize remains that the
number of Gordian movements that encode the knot is only contained in this number of
knots but is not identical to it.

In our example, in fact: xos=+1 and ns= +1.
The part where the cut does not occur, corresponding to the knotting part, is equal to:
k*0S = N*s— c0

We will call this the non-knot part of the given presentation; it is the part where the cut
does not pass in the coloring i = 0.

The non-knot part therefore contains a part corresponding to the dual knot number n=s,
which we will call the Lacan part, in reference to what we have called Lacan knots, and the
non-knot contained in the chain, which we will call the entanglement part.

In purely improper chain knots, the knot part and the Lacan part are opposite (b =b* =h =
h* =0).



The presence of proper crossings can make the knotting part asymmetrical to the Lacan part
(b O b* and h € h*).

In proper knots, the non-knot part is reduced to the Lacan part (ko= 0).

These calculations establish the terminology we have adopted when we talk about the knot
part and the non-knot part of a knot or a chain, with the new precision they bring by
distinguishing as the knotting part the smallest knot part, i = 0, that can be isolated among
the colorings.

Thus, the variation in the cut depends on the entanglement due to its distributions studied
previously.

Now, the movement of the cut follows the knotting through the movements studied here.

In alternating cases, non-zero knotting reveals the knot that we want to further specify, as it
ensures the execution of Gordian movements and homotopies. We summarize this fact in
our formula, which states that the knot is an accomplishment of cutting in our drawings,
which are to be read insofar as we find traces of knotting and the non-knot contained
within, particularly in alternating cases.

Let us return to the same drawing, indicating with the letters a, B, and y the respective
types of crossings of the circles JS, JT, and ST.

S So Fig. 95

Where we see that the non-knot part of the S chain does indeed present the six respective
crossings of the non-knot contained in this chain, to which are added crossings of each type
constituting the Lacan part, to which we will need to return. The knotting part corresponds
well to the knot part, to the cut in this minimum orientation, kos = ns = — 3.



3. Exercises
el - Terrasson graph, node part and non-node part

Here is a knot and its Terrasson graph:

8

We propose retaining only the subgraph that separates the node part from the non-node part
of the Terrasson graph.

&)

Fig. a

Perform the same exercise for the following three node drawings:

g

€2 - Opening of punches, in both composition modes

)
3y

Fig. b

There is a transverse composition based on a portion of the Terrasson graph, whose
midpoint is a solid point.



QOuvert, retourné. ,
Fig. c

There is a derivation composition based on a portion of the Terrasson graph, whose
midpoint is a void point.

Entrebéillé ouvert
Fig. d

Let's open the following punches:



e3 - Composition of sources and node material
We take open punches from the previous exercise to reassemble knots and chains.

What does the composition of these two parts give us?

o

It is a regular composition, the parts have no cross sections. Same exercise

Fig. f

with these two elements, whose punches must be opened.
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Note that the non-knot part is irregular; it is already a cut comb. Then, let's do the

Fig. g

same exercise with these two elements:

%+

This is a regular assembly that produces a Slade chain.

Fig. h

How to compose the Borromean ring from the 3-clover. Is this a different composition from
that of knot 63?

How can we compose Whitehead's chain from the 3-clover and entanglement? e4 -
The little object a in Chinese culture

We are familiar with the Chinese diagram derived from the Taoist tradition.

3

Fig. 1



If we consider this diagram drawn on a sphere, we can complete it by showing the part
hidden from view in a flattened version of the sphere with a hole in it.

Fig. ]

These are three circles placed on the plane. When, in a walk on this plane, a circle is
crossed, we move from a full zone to an empty zone, or conversely from an empty zone to a
full zone. It is important to change the quality of the zone when a circle is crossed. We can
accumulate circles without ever making them meet. In this exercise, there are no crossings.

We have drawn the T-graph that structures this elementary configuration, as we are
studying in this exercise.

0

@‘

Any configuration:

Fig. k



It can be broken down by such a graph, a Terrasson graph, into pieces of two types, and
only two types.

We call them punches.

W

Fig. 1

Punches are composed by joining two edges of their graph that form an edge:

S,

Soit selon un Soit selon un
point de plein. point de vide.

Fig. m
The combination of two punches produces a new generalized punch.

A clasp must be added to this combination of punches to obtain a configuration of the type
proposed.

Fig.n



Question: How can we find the Terrasson graph that breaks down the given configuration
in the case of any configuration of circles?

Method: Start by tackling the problem from both ends.

a — Try to break down increasingly complex configurations, starting with the simplest
ones.

a' — Practice composing punches (a) and (a') in all directions of the plane.

Solution to the exercise on the small object a to the Chinese

Fig. o

Simply place one dot in each area (solid or empty) that does not contain any other areas,
and two dots for each area containing other areas. These solid and empty vertices are then
connected by edges to form the Terrasson graph, which breaks down any configuration of
circles.

Note: The composition of two punches (a) by solids adds a solid circle.



Fig. p

On the other hand, the composition of two punches by empty areas (a') adds an empty circle.

Fig. q

To solve the exercise, it is easier to draw the configuration of circles by following the two
directions of the plane.

The circles in the filled areas are drawn successively from left to right, and the circles in the
empty areas from top to bottom of the sheet. Similarly, following this principle, the filled
points of the graph will be placed horizontally, while the empty points will be aligned
vertically.



Fig. r

Based on these points, the edges are drawn in such a way as to join a solid point to an
empty point that are separated only by a circle, in order to form the two types of punches
(a) and (a'), with the closing punch F on the outside.



Chapter VII
Clinical aspects of node processes

Among the topology flashes reported from J. Lacan's seminar, there is one that deserves
special attention. I have it from the publication of what anyone who heard him say it during
the year of his seminar entitled R.S.I. [2 Sem XXII]. These lectures dealt with the knot
formed by the three consistencies necessary for reading Freud's doctrine—the real, the
symbolic, and the imaginary. At the time, I did not know its significance. Now it appears
that it plays such an important role for Lacan that he hastened to carry it out in order to
show how psychoanalysis works.

That is to say, to revisit the elements already presented. In terms of schemas, with the
significant involution between schema R and schema L, which governs the involution
between Freud's schema and Lacan's. In terms of surfaces, with the translation into the
projective plane of this involution, which legislates between the torus and the Mobius strip.
To manifest through these transfers an agreement, on a specific point, with his doctrine now
formulated in terms of knots.

The data for this exemplary transformation are as follows. A Borromean ring with four
rings can be reduced to a Borromean ring with three rings by abandoning one of its rings,
which he then designates by the three expressions he equates here: psychic reality, the
Oedipus complex, and the symptom [2 Sém XXII, lec 14.01.75].

We consider this passage from four to three, where we will show in this chapter the
function of three, to be homologous to the signifying involution between perception and
consciousness, whose model is given by Freud, with the dream of the dead child burning

[1.a].

In this lesson, Lacan explains the principle behind his critical reading of Freud's doctrine.
This requires a fourth term that holds the other three together. It is explicit in the chain of
four. He wants to test how this discourse can support the three, where Freud's psychic
reality is as if erased, having become implicit in the chain of three circles.

0. From surfaces to the knot

Let us take this opportunity to clarify once againl the relationships between the three
chapters of Lacan's teaching, in terms of graphs, surfaces, and knots. They translate into one
another. There are therefore differences among the constants. The structure of signifying
involution is an invariant. We have already provided the translation of the schemas into
surface problems(2-The reader can refer to the presentation of the movement of the structure
to which we arrived in terms of projective space with a hole, the Mdbius strip, in the
conclusion of our previous work

Very early on, Lacan deals with signifying involution—which is at the root of the rupture
of semblance, causing the trickling of small letters, the erosion of the signified by this
letter, prolonged by the rapture that follows if the subject counts these elements that form a
series,



without missing a single one—in terms of the inversion of the R schema by the continuous
passage to the L schema, where Freud's psychic reality falls for a moment. This is
supported by the immersion of these schemas on the projective plane.

Let us present here these two states of the structure on the immersed projective plane?
where we can see that it is indeed through the retraction of the R zone in state R of this
structure that we move to state L. This state is undoubtedly instantaneous and repressed by
the subject who experiences it,

outside of analysis, in the ordinary functioning of the structure, and represses it to the point
of believing themselves to be ill when they become aware of it.

Schéma R (avec réalité) Schéma L (la réalité choit)

Realitit = réalité Wirklichkeit = effectivité Fig. 1

This pulsation, covered by all kinds of mystifications in the culture that nevertheless
maintains its symbol, but only produces it at the end of the most secret mysteries, we have
constructed in logic* following Tarski, to demonstrate, through Hans, that it is indeed the
imaginary function of the phallus revealed by Freud "as the pivot of the symbolic process"
[E a 20, p. 555].

This dynamic of dispute, which can only be evoked through metaphor, becomes rigidified
in industrial culture to the point of becoming a holophrase. This rigidity arises from a fear
of misconduct, due to a lack of consistent ethical reflection. Conversely, the challenge to
abuses is left to the most foolish demagogues. While the scoundrels claim to justify these
abuses by the significant necessity of this misunderstood structure, they never explain it.

Let us return to the rupture of semblance, in terms of knots, between the four-chain and the
three-chain [2 Sém XXII, le¢ 14.01.75]. We compare this with the formulation we have just
mentioned in terms of an immersed surface. The figures correspond term by term in this
translation.
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R S|+ (X = réalité psychique) RSI 2 choit
Realitét Wirklichkeit

Fig. 2

The same pulsation of the structure occurs between these two states of the chain. But here,
in this nodal version, we will see that it is one of the terms of the transformation that acts
within it.

This happens, as we said at the beginning, in the dream of the father who sees his dead
child burning while addressing him, when in fact the little boy's corpse has caught fire in
the next room. The more appropriate nature of the material in this formalization provides a
first reason for this new translation.

To clarify the second reason for this translation, in the context of the previous version, we
can recall Lacan's response to the preliminary question that it would be desirable to ask at
the outset of any possible treatment of psychic causality, the psy-thing.

Indeed, his reading leads Lacan to spread out the terms of President Schreber's delirium on
a projective plane pierced three times.

However, the dysfunction of the structure that stands in the way of the subject of psychosis
has been formulated since Freud, as Lacan points out, by a foreclosure, like a hole in the
Other, our structure, where the signifier is no longer welcomed, which means that
signification, our pulsation of structure, no longer takes place.

Foreclosed is a term used in grammar and law, meaning null and void, obsolete. The
subject believes himself to be "above that," that it is "good for others," primitives, savages,
ancients, foreigners, barbarians, provincials...

Some people act on this foreclosure by saying "it's outdated," and there is no question of
returning to it. They express the phrase "I don't want to know anything about it" by using,
for example, the interjection "Whatever!".



This failure of the function of invoking speech in a place of discourse—this speech no
longer resonates with what is said—the subject no longer hears what is said, no longer
wants to hear it in this place, beyond the fact that he usually forgets it. He excludes this
function, which is certainly imperative, from the signifier, which is thereby reinforced.
Disbelief presides over delusional belief. This function is usually recognized by the subject
without thinking about it. Bordering on the impossible, which gives it its proven value, if it
is encountered on occasion, it becomes an event. Unable to metaphorize the event, through
the assumed pulsation of the structure

— it is not a matter of consciousness but of recognition — the subject will experience it in
their passion, in their delirium, in a flow of action without resolution.

For it must pass, whatever the cost, contrary to what evolutionary thinking believes, and
since it cannot take the path of writing in speech, the erosion of small letters, it will pass
through the test, less masked to the subject himself, of the structure in question. He
experiences himself as xenopathic. Lacan renders this situation through holes in the
structure.

In

Le Schéma R troue Le Schémal
3 la surface du plan projectif @ la surface du plan projectif

Fig. 3

It is therefore like a hole (a, a') in zone R, which prevents it from closing in order to open,
correlated with the two holes po and oo respectively in zones S and /, that Lacan, in 1956,

This hole prevents the momentary erasure, by retraction, of the zone R, the fall of Z.

Let us show that this situation is indeed that of schema I, since it is obtained from the
deformation—Lacan speaks of caricature [E a 20, pp. 563-575]—of schema R thus
perforated.

We establish this correspondence through the series of figures placed outside the text on the
following two pages.

We can then ask ourselves the question. Does what we will call, with Lacan, scientific
subjectivity change anything in terms of what psychoanalysis must respond to?



It is not the subjectivity of the scientist.

Indeed, at the end of his preliminary remarks, Lacan defines this scientific subjectivity as
"that which the scientist at work in science shares with the man of civilization who supports
it."

Rather, it is the attitude already noted by G. Bachelard in his new scientific spirit when he
remarks that an atomist scientist can perfectly reconcile, in his subjective division, the
animistic or religious beliefs of his maternal culture with his scientific theories. Here we
see the state of mental degradation reached by certain scientists today, who believe
themselves obliged to reject their culture in the name of the Vienna Circle Manifesto. We
know that this circular argument claims to reject psychoanalysis and only accepts
behaviorism. It is therefore not surprising that autism is on the rise (F. Dolto) and that
politics is deteriorating into legalism and fundamentalism.

Caricature of reality
according to President

Schreber



The hole aa' is located in We extend this hole aa',
the
@ (hatched) area.

iy

We retract a strap at the
until it reappears on the point of immersion.
other side of the immersion
line.

We distract the strap
We are constantly turning upwards.

continuously.



— left?

Nous faisons se traverser les
deux bretelles le long de la ligne We draw the second line at
of insertion. the upper point of

branching.

la bretelle vers le bas
to obtain diagram I.



Lacan then defines this subjective position by the three coordinates of a "discourse on
freedom," a "concept of the real," and a "belief in Santa Claus," in which we recognize the
interlocutor in B. Pascal's debate on the void.

This "discourse on freedom" is described as delusional, and we see daily evidence of this in
what is published and disseminated by people who are considered serious. In this context, it
is not surprising that soapbox orators try to compete in demagoguery with all those
involved in politics.

The "concept of reality" is an alibi to which scholars are complicit, hostages to a pact that is
dedicated to ignoring the question of the subject, the subject of science, let's be clear, even
in commerce. It has already happened that blood contaminated with a virus has been sold
under the pretext of good management.

Social psychosis, combined with a belief in Father Christmas, established by Pascal and
continued by Newton, Marx, Einstein, Lenin, Freud, Lacan, and many others, provides the
coordinates of what only the discourse of analysis can respond to when psychoanalysis has
surrendered in the face of the malaise in civilization.

This is not a matter of psychologizing the scientist. We must welcome this subject
responsible for the error of laboratory manipulation, without falling into rudeness, as in the
case of the artist. For here too, the psychoanalyst has only to follow.

An author such as K. Popper thus very aptly places the question of desire that drives
researchers when they devote themselves to a field of investigation outside the scope of his
concerns.

"It so happens that the arguments presented in this book are completely independent of this
problem."

But he makes one mistake, that of rejecting this question of logic and classifying it as a
matter of psychology, referring to Einstein.

However, I believe that the logical method should not be confused with coming up with new
ideas or logically reconstructing this process. I can express my view by saying that every
discovery contains an 'irrational element' or ‘creative intuition', in the Bergsonian sense of
these terms. This is how Einstein speaks of the 'search for those highly universal laws by
which it is possible to obtain a picture of the world by pure deduction. There is no logical
path," he says, "that leads to these laws. They can only be reached through intuition based
on a kind of intellectual love ("Einfiihlung") for the objects of experience" [56, p. 28].

However, following Lacan and Spinoza, we have shown that this amor intellectualis of the
object is part of a classical logic modified into a topology of the subject. At the same time,
Popper misses the point made by Freud, whom he criticizes for the verificationism he
believes he detects in his approach, which is wrong, because Freud constantly refutes his
doctrine, which always proves to be



irrefutable and therefore relevant to the topology of the subject. Thus Popper misses the
mark regarding psychoanalysis, even though he provides its coordinates here.

Psychoanalysis is thus situated, for us, in these categories, in relation to scientific research.
It is not where he believes it should be placed.

It is not an experimental discipline, where competing theories falsify each other (the
Popperian version of science).

Psychoanalysis is based on a logic that is invalid but irrefutable, our topology. This means
that it is not a science, but neither is it metaphysics or ideology. This is where Popper's
political thinking and free enterprise fail in the city, complicit in the crime of good
management because it believes it regulates, as these people say, the question of the subject
through competition rather than reason. Another policy is called for here, meaning that the
problem of virtue has not been solved by the supposedly ideology-free managers of
consciousness.

The overflow of techniques, derived from science, itself a product of the reversal of
theology, particularly Catholic theology, into anthropology, as evidenced by Descartes, sees
scientific subjectivity, defined by the civilization of the West, grow and spread, in pure
ignorance, throughout the city and the empire. It took J.R. Oppenheimer to build the bomb
to begin to worry about desire in science in relation to common sense. This new science,
predicted by Galileo, is more endured by its scholars, and the civilization that supports
them, than decided by them. The relationship between experts and politicians is thus
reduced to its real dimension.

Following several decades of psychoanalytic practice, Lacan's observation of the
difficulties, even obstacles, encountered in practice leads us to consider that the defect
perceived in Schreber's psychosis is much more fundamental to scientific subjectivity, to
the subject who comes into analysis.

In a speech delivered at the end of a conference in Deauville in the 1970s, in which he did
not reveal everything, Lacan went so far as to wonder whether all the people who came to
see him were psychotic. This was a psychiatrist's irony directed at those concerned.

“Why would anyone ask an analyst about the nature of their symptoms? Everyone has
them, given that everyone is neurotic. That's why we call the symptom neurotic, and when
it's not neurotic, people are wise enough not to ask an analyst to deal with it. Which proves
that only someone who is psychotic would go so far as to ask the analyst to fix it."

J. Lacan, free quotation collected at the Deauville conference, January 1978, not taken from
a written work.



We are not saying, as some would have us say, that "in scientific civilization, everyone is
psychotic," and we do not write this. Neither does Lacan, for in his Ecrits, he more readily
uses the expressions psychosis and psychotic process, and so we have identified this
category of scientific subjectivity.

For our part, today, we must be more precise, using the term social psychosis to clearly
indicate what this process is about, not wanting to encourage the rudeness we mentioned
above, which is so widespread today, to the point of impotence. We are referring to mental
means, since Lacan's death.

The fact is that we are more inclined to take our clinical and methodological cues from R.
Jakobson than from M. Foucault’. Jakobson's study of aphasia [47], based on his poetics,
remains a model of its kind in structural clinical practice, apart from the two founders of
psychoanalysis. This is different from the history of madness in the classical age, which
does not even distinguish between madness and psychic causality. To understand this, we
recommend reading B. Ogilvie [54], which definitively clarifies what can be expected from
a clinical exhaustion such as Lacan attempted in his medical thesis. It is to realize the
necessity of structure between innate and acquired materials. Without this, it is impossible
to untangle, but of course the average reader does not even notice this. Not for a long time,
because you have to follow the reasons, without missing a single one, before it closes in on
the impossible(®-

There is a drama in science, exemplified by the one that plays out in analysis, but Lacan
raises the question of whether it always relates to the Oedipus complex, unless it is called
into question [E a 32, p. 870].

What happens in analytical discourse is therefore exemplary but not exempt from it. This
social bond is part of the question, and it is not a good response to avoid questioning it, or
to put only poor little people in the hot seat for the purposes of intimidation and power, as
we see today, for lack of an appropriate response that involves everyone.

Let us begin by saying how much we value those who should not be called our colleagues,
as the term is not appropriate in this field, but our peers. We are addressing here the
analysands of Freud and Lacan, as well as the analysands of those two. This community,
bound by a unique experience in this century, has always deserved our fraternal
consideration.

But this observation should not be shared with the proponents of psychoanalysis who
remain speechless in the face of what we must recognize in transference. The crudest
ignorance on the point of recognizing desire in the twists and turns of its act.

We should not tell them, so as not to alarm them, so that they can continue to believe that
they are practicing a therapeutic technique and that they are saints, which is necessary. That
they can still do something for someone, or that they have the power to do so, a belief that
they protect, thinking that people will turn to them.



The most adventurous among them believe that one day they will be able to cure psychosis,
when they cannot even see that everyone will see that they do not see it developing in the
noise and fury around them. We are playing it safe while the massacre continues around us,
just a little further away.

Shared cynicism is content to demand and respond to social demand, where we draw on
various social workers for a model of practice, instead of importing another.

Of course, the narcissism of the group must be spared. But this is not so that they can
continue to believe that they are sufficient to fulfill their task, which consists of occupying
this necessary place of pretense for others.

Would we remain within Freud's field, ignoring the existence of psychoanalysis and
pretending that we should be content to maintain its current form in its true semblance?
This is what certain clever minds have seen fit to implement.

Or we would have to hide from our contemporaries this passion for ignorance that inhabits
them and about which they want to know nothing, this diagnosis and how to respond to it.

Or we must acknowledge that the Cartesian subject, the subject of psychoanalysis, is well
defined by a fetishization of being.

Or we should also recognize, in the transition from clinical practice to the practice of
analysis, that if there are structural gaps for everyone in this civilization, we may be
moving away from a simple reduction to the Oedipus complex, but the edges of these gaps
are knotted.

Now, the edges of these gaps are circles whose arrangement requires a substitution—some
have noticed this, but have done nothing more than add another holophrase, reserving this
substitution for psychosis—when the subject fails to tie them in the manner that is required,
in the purest sense.

Lacan responded with circles, circles... to the ever-preliminary question that scientific
subjectivity asks itself in this context of social psychosis, meaning political economism as
well. And these circles form a knot.

But this is to emphasize the pulsation that must always be assumed by each subject, which
requires them to endure this instantaneous shift in psychic reality according to Freud, also
known as Oedipus, since it is the principle of love for the father. This is the structure of the
symptom. This jouissance that truth finds in opposing knowledge [E a' 13, p. 58].

Its erasure is only momentary; like the phoenix, it always rises from its ashes, and even
immediately. This is why this key to the structure will never be touristy [E a 30, p. 838].



Speaking of the Borromean knot, Lacan specifies:

"That's where... that's where the problem lies... that it's a mistake... to think that... it's the
norm... for the relationship between three functions... that don't exist... in relation to each
other... in their exercise... except in beings... who, because of this... believe themselves to
be HUMAN..."

It is indeed an error, and denouncing it has nothing to do with seeking totality. As for the
absolute, it is about detachment.

Absolute means separate, Lacan continues:

"... It is not... that the Symbolic, the Imaginary, and the Real... are broken... that defines
perversion... it is that they are distinct... and... that we must suppose a fourth... which is the
sinthome on this occasion... which we must suppose to be tetradic..."

By defining perversion in relation to love for the father as never before.

From where we started with Hans and Tarski from his failure in the phallic function.

"What connects Borromean... (is) that perversion... (does) not mean version... towards the
father... and that, in short... the father is a symptom or a sinthome... as you know... The
existence of the symptom... is what is implied... by the position MEME... the one that

supposes this link... between the Imaginary, the Symbolic, and the Real... enigmatic."

J. Lacan [2. The sinthome].

We are now aware of what we are starting from, the function fulfilled by this fourth term
and its topology, which is nothing like a broken chain. Only a version towards the father,
always failed, but how? We will now show what is failed, the failure of the effectiveness of
the three by the four. But we must know where to go.

This transformation from a chain of four to a chain of three, since that is how we now
formulate it, as Lacan showed on the board [2 Sém XXII, January 14, 1975], must be
specified, to be well defined, as a Gordian movement.

You need to color the 4-chain knot:



Fig. 4

Then perform the Gordian knot on two crossings. This involves reversing these two
crossings, here between circles R and S,
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Fig.5

in order to slide the circle Z, sinthome, Oedipus, psychic reality, love towards the father,
jouissance, which no longer lasts for a moment.

It is in the context of this question that we intend to deal with the object in psychosis,
insofar as we want to show how and in what capacity the clover knot becomes the
counterpart of schema I, i.e., schema R with three holes:

Fig. 6



in order to account for paranoiac psychosis [2 Sém XXIII] in this chapter of Lacan's
teaching.

The clover knot is a knot homologous to the Borromean chain modulo two, connected by
cross sections. Our final result will concern this homology independently of the number of
circles in the objects.

Let us now show, with the main result of this work, the knot movement, which can provide
the means of defining the number of knots contained in an object, that the 3-Borromean
chain is indeed the means of implicitly formulating the 4-chain, but at the same time it also

condenses this involution between chains.

We can revisit the o theory of non-knots in terms of knots, with the roo theory of intrinsic
chains, and introduce a new movement.

1. Intrinsic chain theory and knot theory

By defining a new movement, which we will call the knot movement, we can formulate a
new invariant in classical knot theory in order to clarify our knot theory.

This refers to another theory of entanglements, reducible to non-knots where knot
movement has been substituted for Gordian knots and homotopies. We will call this new

theory Too, the theory of intrinsic chains?.

In relation to this theory of intrinsic chains, we will first construct a theory of knots in order
to define the number of knots, then we will reduce this to a theory of knots.

al - The knot movement

Let's start by defining this new N3 movement, which is performed on alternating triskels:

Fig.7

This movement is equivalent to adding a Borromean knot chain to an alternating triskelion.
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This presentation of the knot movement justifies our calling it the Borromean chain knot
movement or Borromean movement. The role it will play in knot theory establishes the
structural function assigned to it in the Freudian field by Lacan.

Fig. 8

This necessary stop, never produced before, finally allows us to see how it is by resorting to
the Borromean chain knot that we can operate on the clover, which is the first primary
knot?8,

N3 1 SME
C/ C
Fig. 9
We will explain how to use it in general cases.
This knot movement is a combination of elementary movements in our previous theory of
intertwining. The series that represents it always contains a T3 movement and a Gordian

knot, among loops.

In this way:
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(M3, T3, G, M)
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Or this one:
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(M2, G, T3, M2)

Fig. 11

We number these new movements so that their number, a, can be expressed in the number
of knots by the formula 3a =2g + t.

It should be noted that if a knot movement replaces a specific Gordian knot, accompanied
by a T3 movement, any Gordian knot is not necessarily likely to be rendered by a single

knot movement, but it is certainly rendered by several movements, as we will now show.

a2 - From the theory of extrinsic knots to the theory of intrinsic chains



In order to write a TN theory of knots and construct the knot number, for any knot or chain,
we will untangle (erase) this object in a Too theory of intrinsic chains, where positive knot
moves replace Gordian moves and homotopies from the previous entanglement theory, and
where we maintain the use of Reidemeister moves.

We then define, thanks to these changes in presentations, a relation rn (si, s2) on the set of
presentations of knots or chains.

That is: RN (s1, s2) © T S (8 (s1) =2)

This relation is an equivalence relation. We will sometimes write it as g1 =N s».

We will call the equivalence classes defined by this relation chains. These classes of
presentations constitute the objects of Too theory.

This Too theory of intrinsic chains is the theory of these equivalence classes, and it is easy to
show by calculating the crossing signs of any orientation (see Fig. 27), when dealing with
improper crossings, that these movements respect the distribution of chain numbers and,
consequently, the rz relation.

Identical objects in this theory have the same linkings

For two presentations of chains or knots g1 and s»:

RN (s1, 2) = Rz (s1, 52)

We now provide proof of the reciprocal implication that two chains with the same
distribution of their respective chain numbers, RE-equivalent, would be identical in chain

theory.

This amounts to asking whether, for two chains s; and s2 that are RX-equivalent, there
always exists a series § of movements in our new chain theory such that:

2= 8 (s1)
Answering this question in the affirmative proves the following theorem.

Two equivalent non-nodes are two identical objects

If two chains s; and s, are RE-equivalent, then they are RN-equivalent: rs (s1, s2) = RN (s1,
$2)



We already know, from the ro relation in place of rn, having encountered it with the use of
composition # in our theory of entanglements, in terms of Gordian knots and homotopies,
that the proof of this theorem requires demonstrating two things, which we group here into
a single statement.

Chain knots and proper knots are unlinked.

A chain knot (or proper knot) can always be reduced, through a series of moves from the
Too theory of intrinsic chains, to a trivial chain (or trivial circle).

Let us give a proof of this theorem, which is remarkable in that it suffices to consider chain
knots and proper knots.

Using the M2, T3, and N3 moves, we can extract any loop from a chain knot. The N3
move allows us to pass the obstacles represented by the alternating triskels.

By performing these same types of moves, we can extract each of the circles from a chain
knot one by one, since it does not contain any intertwining.

The theorem is proven by the fact that the M2 and T3 moves apply to non-alternating
meshes and triskels, and that we can use the N3 move for alternating triskels. There is no
alternating mesh without another alternating mesh with the opposite twist to compensate for
it, and we do not encounter any other cases.

Let's illustrate this with an example; we will use the k2-1 # s2 assembly already discussed in
Chapter I'V.

Fig. 12
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In this chain theory, let's number all of our movements arranged in Table 3. This basic
numbering is summarized in Table 4 opposite the previous one. Given a change in
presentation § defined by the series (X1... xn) with xi belonging to the set of our
movements, we can define the set s of numbers in the series:

s = {b’ b*’ t, a}
It is then easy to calculate the following proposition.

Relationship between the averages of the number of cuts

If two chains s; and s> are linked by the series of digit movements § such that
: $ (s1) = s2, then the averages of the number of cuts in these two chains satisfy:

2(s2)=b+tt+3a+2Z(s1)

Y*(s2) =—b* —t—3a+ X*(s1)

if s = {b, b*, t, a}.

And to take note of the new definition of knot numbers.

Definition

We will call the two expressions dual knotting numbers of each other: ns=b + t +

3a

Nt =—b* —t—3a

With these definitions established, we can now discuss 1~ knot theory.

Our 1~ theory of knots is therefore extrinsic to this Too theory of chains. Its movements are
the Reidemeister movements of classical knot theory. Its objects are the equivalence classes
produced by these movements. We thus return to classical Tc knot theory, where we define
a new invariant through calculation thanks to this connection with the too theory of intrinsic
chains.

The calculation consists of untying the presentations intrinsically to the too theory of chains
in order to obtain an analysis of their number of knots, from which we retain only the
number of knot movements noted a, in order to calculate the number of knots.

This number is invariant for ambient isotopies (Reidemeister moves), since it does not

depend on B1, M2, or T3, as these moves only vary the number of knots but not the
number of knots.



a3 - The number of nodes

We begin by determining, in any node or chain S, the distribution of chain numbers s; using
the entanglement numbers, which are easy to calculate using colorings.

Proper nodes have a chain number of zero, and the non-node so they contain is trivial.

In the case of chains of two and three circles, this allows us to determine which non-node so
is contained in the chain.

In the case of chains of four or more circles, the distribution of chain numbers Si allows us
to determine the minimum alternating presentation so contained in the chain. This minimum
alternating presentation may be a non-knot, or a chain with a cut, as explained in chapter
five.

The number of nodes will be determined in relation to the example case chosen to represent
the entanglement state.

If there are different series of moves § that transform so into S, which we formalize with the
expression:

S — 5o

$

which states that presentation S represents movement § for presentation so. Movement
whose dual knot numbers are expressed in this new theory of intrinsic chains by:

Ns = bs T ts T 3as N*s = —

b*s — ts — 3as

Definition

We will call the number of knots in a given presentation the minimum number, denoted by
a, of the numbers of knot moves obtained for all series § that lead from the distribution so of

the linkages contained in this presentation to this presentation S itself:

a=min. us



such that: § (so) =S
With Ns = bs + ts + 3as aNd N*s = — b*s — t*s — 3as

The reader can verify that this number is invariant for ambient isotopies, since it does not
depend on the B1 and T3 moves and is indifferent to the M2 moves.

Let's look at an example of such a calculation in a non-alternating case:

Fig. 14

The calculation of the distribution of chain numbers Si for the various orientations gives the
following results?:

2=+, 25;=-3, Lmy=+1, 25y =+1

where we recognize the distribution of the first Olympic chain of negative torsion, thus
determining SO:

X
£ (e
\_/z

S So

Fig. 15

We must determine the series § of movements that transforms sp into S. To do this, we
unravel S into so through a series of movements, switching to the dual presentation when
necessary to perform N3 movements.
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We have just untied S in so through a series of movements; let's call it $-1. It is easy to
determine the series § of movements that transforms so into S.

Simply reproduce this series of movements retroactively, taking care to switch to the dual
when it is necessary to perform a movement N3. We can thus verify that the number of

knots here is certainly less than or equal to two, i.e., a < 2.

There is still the same uncertainty regarding its minimal nature.

) (K

17

Since we always calculate the dual knot count using the knot count, these different
transitions to the dual representation are easy to check by calculation, as they simply
transpose these two numbers.



The only question that remains unanswered is whether this is the minimum number of knot
moves, which has not been decided, but which does not prevent the number of knots from
existing.

a4 - At stake in this new invariant

The calculation of the number of knots by drawing depends on this uncertainty, and in
mathematics we can propose to search for a knot polynomial, similar to skein calculus,
whose degree of a factor could produce this number from any presentation. Otherwise, the
proof that such a polynomial is impossible to construct is also a result that is of great
interest in order to provide, by a contrary reason, some clarification in this nodal field.

When calculating the number of knots, we see the importance of duality in choosing the
preferred presentation of alternating cases, and consequently of non-alternating cases.

Thus, the fact that S represents a movement § for so produces the number of nodes a, which
we express as:

S — so

S a

But it is trivial that this use of the node number can be generalized to any pair of
presentations si and s> belonging to the same intrinsic chain for the too theory of intrinsic
chains. A presentation s representing a series of movements § for another presentation s>
produces a node number a:

S1 ™ s2

b a

If a =0, we will say very classically that S1 and S2 are two presentations of the same object
in knot theory Tec.

a5 - A knot theory

If we refer to a chain theory that consists of performing positive knot movements,
numbered in Table 4 (see above), and their inverses, numbered negatively, we can calculate
relative knot numbers, but the condition that requires choosing the series with the minimum
number of knots produces a brutal modulo two quotient of this knot number.



The knot number is reduced to 0 or 1.

In the related knot theory, in a proper knot or any chain, there is either one knot or no knot.
In this theory, there is only one knot.

a6 - Decomposition and T3 by G2 and N3

To conclude this section on definitions, we return to recent mathematical research on
classical knot theory by clarifying the analysis of Reidemeister's third move.

Indeed, when applied to a triskelion made up of three distinct string elements, it
decomposes into a series containing a Gordian move from entanglement theory and a
Borromean chain move from the chain theory presented above.

Fig. 18
We propose this result for consideration by mathematicians, in light of their existing
treatment of the T3 movement in terms of the algebra of solutions to Yang-Baxter
equations [18. c].
a7 - Three is the reason for the ratio of three to four rounds
It will then suffice for us to show how the reduction of the 4-chain to the three-chain,
already achieved in the above by a Gordian movement, also occurs thanks to a knot

movement.

We choose a triskelion in a presentation of the four-chain and perform the knot movement.
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Fig. 19

This allows us to perform an M2 movement in this drawing. Two T3 movements would be
enough to release this mesh, but we will not do so. However, the reader can verify this.

N

(s

Fig. 20

The fourth round is detached by a series of T3s, leaving only a 3-chain, which was obtained
from the 4-chain due to the action of the 3-chain through the knot movement.

@

Fig. 21



The reader will notice that we have chosen different presentations of the four-chain to show
how to transform it into a three-chain using either the Gordian movement or the knot
movement; but this is not necessary.

2. Differentiation of three types of knot movements

We can now refine our analysis of the knot by filtering the multiplicity of our objects
through the three distinct types of knot movements. We now define them with their
prototypical objects.

The knot movement we have just constructed to define the number of knots can be
differentiated according to the number of distinct loops used in its execution.

We will call the knot movement improper, denoted Ni, when it is performed on a triskelion
composed of three string elements belonging to three different circles.

- X

\

Ni
Fig. 22

This type of movement only produces improper crossings and therefore eliminates three-
ring Borromean knots, whether they are Borromean or generalized Borromean:

QED

Chainceud Chainceud Fi
C e 1g. 23
borroméenne borroméenne généralisée

It is the entry into scientific subjectivity through the absence of metaphor that is the locus
of paranoid delusion.




We will call the knot movement a Aybrid knot, denoted Nh, when the triskelion is
composed of three string elements belonging to two different circles.

A

N
" Fig. 24

This type of movement has two improper crossings and one proper crossing. It eliminates
the generalized chain knots of two and three circles.

Chainceud Chainceud
borroméenne généralisée de Whitehead Fig. 25

Generalized chain knots of three circles are a modality of four among objects made of three
circles.

It is in the effectiveness of our theory of objects made of one to three circles that the trace
or remnant of the fourth, known as reality, Oedipus, the sinthome, or even love for the
father, allows us to situate the act or event between reality and effectiveness.

For the same reasons, since they are also obtained by a transverse section, Whitehead's
knots made of two circles are a modality of the three among objects made of two circles.

We will call the knot movement proper, denoted np, the knot movement when the triskelion
is composed of three string elements belonging to the same circle.
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All three of its crossings are proper crossings. It removes proper knots:

Neeud tréfle Flg 27

This is the renunciation of delirium. Delirium forgets, more or less partially, the non-knot
part of chain knots.

al - The lattice of knot theories

We can thus define eight different theories that will enable us to analyze the nodal space in
sufficient detail.

Armed with these definitions, we adopt the principle of using these different movements in
a differentiated manner. The eight theories differ depending on whether we use only one of

these movements, or two or three, as we did in the theory of intrinsic chains.

Each theory will have its own theorems.
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Together, they will enable us to consider how to remove the entanglements in order to
obtain only knot theories.



L'enlacement Fig. 28

We will only undertake this analysis in the works!®that follow this one. The removal of
entanglements will allow us to formulate the practice of analysis as a rejection of the
neurotic torus and, consequently, of madness.

While waiting to undertake these separate studies and bring them together in this structure,
the latticework of these different theories will serve to diffract the Freudian structures of
psychoanalytic clinical practice.

a2 - Clarification in the debate between Lacan and Soury

We now have the operator that removes the complications introduced by Whitehead's chain
and the generalized Borromean knot. These complications are invisible from the proper or
improper Gordian theories that distinguish the respective advances of Lacan and Soury.
This is the hybrid knot movement.

If we return to the graph we used in Chapter VI to present them, we can index it by the

three types of knot movement that are thus arranged in relation to proper and improper
Gordian movements.
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In our theories of one to three circles, the generalized Borromean:

Fig. 29

represents the four in the three, or the sinthome Z. This is clarified by the study of cross

sections, which remains to be developed. There is something of the four, and therefore of
the two, in this three that is different from the three of the Borromean knot.

Consequently, the hybrid movement will be more precisely, in this context of objects made
of one to three circles, the operator of the involution between the four and the three.



First question raised by our presentation

A first question then arises. It concerns the permutations between these types of knot
movements. In other words, is the following diagram commutative?

To=Ty
Cralinas
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The answer to this question is easy to give. Only Whitehead-type and generalized
Borromean chains pose problems. These chains break down differently in the sense that
generalized Borromean chains can be broken down by both hybrid movements and
improper movements, which is not the case for Whitehead-type chains, which can only be
trivialized by hybrid movements.

We can now present the problem of psychoanalytic clinical practice and Freudian
structures.

We will then add a final topological definition, that of homology, in order to give a
complete formulation to the dialogue established between Lacan and Soury. This debate
still has a few surprises in store for us, as Soury was undoubtedly more interested in
Freudian clinical practice in terms of neurosis and perversion than the audience at the time
suspected.



perversion. Lacan was alone in taking up the cudgels against psychosis. This homology
refers to a relationship of equivalence defined between objects that may have a different
number of circles. Objects with one, two, or three circles are homologous from this point of
view.

Here again, we can differentiate between more or less subtle relationships of homology
depending on what we consider to be knotted or unknotted.

We can vary the analysis:

— by considering them as unknotted, i.e., neutral with respect to the knot, either the free
loops between them in the trivial knot, or the linked loops of the non-knots in our theory of
intrinsic chains;

— by identifying objects according to the choice of one of our different theories.

This approach will lead to the question of the heterology of the knot, completing the
formulation of the difference between proper and improper, with entanglements being
present or absent.

Thus, the deployment and gathering of this clinic, the consequences of the exchanges
between J. Lacan and P. Soury despite the great difficulties encountered and the heterology
of the knot, will be the focus of the last two works in this series, given the results obtained
through this continuation of our various works dealing with the knot.

3. Freudian structures of the clinic in knot topology

Let us now implement a number of points of overlap between nodal structures and Freudian
structures.

There are two major difficulties encountered by beginners when approaching
psychoanalysis through the nodal space. The study of these objects and their function
remains problematic. But the first difficulty has two aspects. There are the results
themselves, but there is also the use or practice of this quest, which is linked to the Freudian
structures of neurosis and perversion on the one hand, and psychosis on the other. These are
styles of investigation. The second difficulty is therefore linked to the first.

1 — Beyond the first aspect, to which some would like to reduce our work, we have begun
to respond to the second aspect by talking about reading.

If, for Lacan, the goal is to write this clinical practice of psychoanalysis as an orography
independent of the old psychiatric nosography, this initial response needs to be supported
more rigorously, because we are not there yet and no one invents a writing style in
isolation.



Our aim remains to practice reading and to respond to the legibility of what Lacan has
stated. For the thesis that represents the existence of psychoanalysis in the world, which is
not a hypothesis despite the fact that its proponents are still intimidated by it, is that there is
something legible even before or without writing being constituted as such.

We now take it up again by dealing with translations, transpositions, transcriptions, in
short: the capiton points proposed by Lacan between the discourse of analysis and this
topology of the knot. And we already respond to the second difficulty.

This padding is done according to the structure of the poetic metaphor radicalized here into
signifying condensation. This means that there is nothing to understand, there is only to
follow Lacan or not to follow him, and to explain if we choose to follow him, in the sense
of unfolding, of explicating the paradigm thus constructed in an absolute manner.

Learning is produced by the coordinated practice of the two texts subject to translation, as
in Japanese writing. The study of knots, as we rigorously apply ourselves to it by means of
string and drawing. The retroactive reading of Lacan and Freud to situate what is at stake,
and of a few others to grasp what should not be done.

For we expect renewed clinical presentations that have a different purpose than to make us
believe in the pseudo-medical guarantees of those who have practiced it until now. That
said politely, we always set Freud and Lacan apart.

2 — As for the second difficulty, the function that is not meaning but produces it here risks
remaining masked by what remains our main aim, namely, the updating of the main
structure of the Freudian field on which depends, from the signifier to the symptom, any
formation of the Ics and of fantasy to the subjective split. Here we add a few additional
elements to the chain of reasons we have woven, for our own use, in order to express the
link, confirmed by those who reject it, between rhetoric and logic. We want to establish this
practice of saying by formulating the rhetorical or sophistical condition in the continuation
of the condition of use formulated by Tarski of the truth predicate. Either establish it on the
real side, in a less idiotic practice of narcissism that no longer resorts to material reduced to
bodily fragments but to its chord, around what insists on being impossible, between
intrinsic and extrinsic, or what never ceases not to be written.

We began this weaving from the very first work in this series, with a most precise
definition of the function of the phallus, the dimension of pretense, starting from the fetish.
This means that our progress is contingent, due to love and the chance of encounter, since
in this series a piece of reality ceases not to be written.

Freudian clinical structures have their topological transcriptions in the discourse of
analysis. The aim is to situate neurosis, perversion, psychosis, and psychoanalysis itself in
practice. Care must be taken to distinguish madness despite its proximity to neurosis in
terms of the superego, and to specify the psychic causality in its presentation through
perversion in terms of fetishism.



This introduction to the Ics and sexuality, as Freud understood them, through the function
of the phallus and the functioning of semblance, leads us to clarify the difference between
improper metaphor and the delirium specific to paranoid psychosis.

The structure of fantasy is thus framed, and we can situate the question of the constructible
object in psychoanalysis.

a0 - Madness and psychic causality

To correctly situate the analytical discourse, it is necessary to distinguish between madness
and psychic causality. Without this reminder at the entrance to the Freudian field, there is
no chance of finding one's way around the structure.

We will present the terms after recalling this axiom, which determines the fundamental
evidence of analytical discourse. It is so obvious that it remains forgotten, even unnoticed
by practitioners themselves, thus falling under the principle of causal structure, which will
be discussed below.

We therefore begin this chapter with a reminder of a structure that may seem ethical—and
indeed it is—since our aesthetic is an ethic. It is a matter of resolution.

Resolution of desire, in the sense of resolving desire as one resolves an equation by finding
the solution that satisfies it, in the sense of a resolved desire from which nothing can divert
the subject. This is what neurosis abhors.

Let us return to the various definitions of madness proposed by Lacan [E a 8].
Particular madness...

The human mammal is xenopathic because of its actual prematurity. Its condition requires
it to incorporate itself into discourse as if into an iron lung. It is therefore fundamentally
spoken by the Other, and is thus a speaking being.

But this necessity does not oblige him to believe that he is being spoken to by another, the
first definition of madness, in reality. This differs from being spoken to by the Other, a
place of truthful fiction, real, more real than reality. This belief can only be established
through resignation.

This renunciation has a first name, ignorance, the main definition of madness. It is not not
knowing, it is refusing to recognize what he knows very well, even too well.

The result of this evasion through repentance is the self, this envelope of the abject m = i
(a) in which to revel; the self is a crazy structure.



Thus the subject can believe in it, the second definition of madness, or believe in himself,
as they say in the south of France:

"Who does he think he is?"

we say. It suits him well. This statement comes from a question:

"Who does he think he is?"

Indeed: "Who does he think he is?"

This failure to recognize leads the subject to reject their own responsibility onto the other,
onto others. This is the policy of the beautiful neurotic soul, the third definition of madness,
which ties in with the first.

Since the subject is xenopathic, entirely determined by the Other, that is the unconscious,
the place "where it was," as Freud tells us, which I radically reject. It is very difficult for me
to say "L," to recognize myself as responsible, to become a subject who says "I." But "I

must become," adds Freud.

We prolong the difficulty by adding that this recognition takes place after the fact, which
does not provide mitigating circumstances.

This is a difficult, even impossible ethic to bear without the notion of truth as fiction
covered by fiction, that is, the Other reduced to the other. We must have an insight into the

phallic function that covers everything that is not there.

If this is not the case, it is madness, ignorance with its repercussions of unconscious guilt,
as if the subject were being told by this Other:

"Oh yes, it's not you! You say you had nothing to
do with it! You say you have extenuating
circumstances!

Well, you'll see if it's not you!"

An abject and totalitarian response from the Other. A structural necessity slowly discovered
by Freud, he gave it the name superego, finally formulated by Lacan.

This formula is as real as that of universal gravitation.

... and collective madness

Freud proposes to describe the malaise in society based on the observation that civilization
not only requires the subject to submit to the law of society and renounce his desire. Is it his

desire? Is it his impulses? Freud adds that the more the subject gives in to his desire, the
more



they submit to the law by renouncing the Law, the greater the ever-increasing demand
imposed on them by the Law, which is thus integrated.

Only petty moralists spread Freud's teaching as neurotic, as it suits them in their own way
of satisfying what they are subjected to, seeking to evade it. Creon by name, call him to
good people, sacred name of no, no of name.

Lacan extends it [2 Sem 3], because there is worse, which, contrary to the adage, we can be
sure of as we are of the father.

Madness runs rampant in the streets. There is no social order that is not based on neurosis.
The subject's self-harm ensures social stability.

Harming oneself is the aspect of the superego in neurosis, the neurotic harm resulting from
ignorance.

And Lacan adds, harming others with a few cutting words, the law allows us the full extent
of this.

Alternative to asylum

Psychoanalysis only begins when the subject renounces madness, having sufficiently
debated the politics of the beautiful soul [E a 21].

Non-madness defines the position of the analysand; this is how psychoanalysis treats and
cures neurosis. Those who say otherwise or are skeptical are madmen who have never met
Freud or Lacan or any of their students who have persevered without understanding
anything.

All that remains now is to carry out this analysis, to complete it in its regularity, to find its
legitimate fulfillment. It is the study, to its rigorous conclusion for the subject himself, of
mental causality, his own, in order to make it something other than mitigating
circumstances.

Given this prerequisite, before undertaking a clinical practice of psychoanalysis from which
madness is rejected, we propose here a clinical practice of preliminary interviews, that is, a
clinical practice of the asylum, the world in which we live, dominated by entanglement,
madness.

Clinic of the asylum

Our structural reference points lead us to revise preconceived ideas and elaborate on their
objects, as it seems preferable to refer to the logical constraints of the structure, such as the
texts of Freud and Lacan that have not yet been read in this regard, rather than relying on
vague impressions that we are led to believe are based on experience.



In most cases, everyone's experience merely follows what rumor has it. Twenty years of
practice, in a position to provide psychoanalytic consultation, have confirmed this for us.

This crowd rumor confirms the structure by seeking to contradict it, it makes the sharp edge
of the test appear blurred and shocks the personal experience of those who have had a
somewhat advanced or demanding one.

Anyone who does not have Freud's clinical intuition. It is already difficult to follow Lacan's
reasoning and arguments. He wanted it this way so that one could not simulate without it
being seen. And it can be seen, or heard. Yet despite this, Lacan finds and places the
Freudian arrows in their rightful place.

We will start again from the framework of the eight theories already isolated. They divide
up the clinical structures of the asylum where we locate the Gordian movements. The
proper Gordian movement is denoted by H and the improper Gordian movement by G.

The reader will note that the non-knots, in terms of entanglement, occupy all the positions
in this lattice, which is why we refer to the asylum in this context.
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Let us begin with the positions that psychoanalysis has always considered treatable. These
are the styles in which the subject's capacity for metaphor is not completely destroyed, and
a certain credulity persists with regard to pretense. We are referring to neurosis and
perversion, which are opposed to each other in structure, as are repulsion and attraction.

The neurotic torus

The structure of neurosis is the structure of the torus. We propose to write it as follows.



névrose — enlacement

How should we read this algorithm? Lacan presents neurosis in terms of desire and demand
on the torus [2 a' 26]. The subject repeats the turns of his demand without realizing that he
is also going through a turn of desire. This is the duality of meridian turns and longitude
turns for a subject who forgets, because of his intrinsic position, that he is subject to the
torus, failing to move to the extrinsic to consider the torus as an object(1-

In neurosis, the drive:
($0D)
comes in place of the fantasy, as can be deduced from the calculation of the mathéme.

Where, in fact, D, the demand, ® =0D and D replaces a, the object causing desire, in the

formula of fantasy.
($0a)

The subject of this making of the torus, through this misunderstanding of desire in demand.
Submission involves the subject's abdication of responsibility, his madness.

Thus, in the neurotic, the term =0, negation of the penis as a return effect of the negativity
covered by the phallus, is fixed under the matheme of the subject § in its oscillation
between the two terms of the fantasy.

$
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This sheds light on the clinical fact that neurotics hate their own names. It is a narcissistic
defect called repression. This creates some concerns for the subject regarding the assertion
that he can no longer distinguish between affirmation and negation. As a result, he believes
he does not believe in Santa Claus when in fact he does, a pretense that lasts.

Lacan then turns the matter around, ending up saying the same thing in reverse [E a' 26, p.
42].

Now, the toric structure in nodal terms is entanglement. Let us mark this structure with an
icon.



I'enlacement Fig. 30

The variety of entanglement is homeotopic to the toric surface. This means that regardless
of their dimension, these spaces have the same fundamental group. We can traverse the
same classes of trajectories in them.

From this we can deduce our scription. The structure of neurosis is the structure of
unrecognized entanglement.

The structure of neurosis is to do oneself harm. The process of the superego as a response
of the unconscious. The subject makes itself a torus by omitting the dimension of the Other.

The forgotten Other reminds the subject of itself through symbolic guilt, take the boat that
deserves to be meditated upon, of the debt of the same name.

The forcing of the Other gives the same result in the reproaches that the subject addresses
to him or the causality that he puts in him to evade responsibility.

Masturbation has the same effects. Outside of very strict asceticism, it does a disservice to
the organ because of the impasse created with the Other, the neurotic subject believing that
they will achieve their ends more quickly.

We will therefore note that neurosis has the same character as madness, as a consequence
of the politics of the beautiful soul. The ego is a mad authority, we have said, and neurosis
is a malaise of the strong, irresponsible ego.

Super-ego madness, which Freud's analytical treatment came up against with the negative
therapeutic reaction that put his analysands up against the wall of the phallic function. To
overcome this impasse, a more elaborate analytical discourse is needed among its
proponents. Even if they are few in number, they must go so far as to accept the axioms of
this discourse.

We will talk about neurotic madness, the hysterical neurosis that the analysand must leave
at the door of analysis. This is why psychoanalysis cures neurosis, but it is still necessary to

commit to it, and there must still be analytical discourse.

We will talk about the neurotic madness of entanglement.



We will thematize this madness through the following metaphorical and scriptural formula
that dominates civilization reduced to the rank of asylum.

folie —  enlacement

@ Q.

Behind the super-egoic madness, a voice adds: "(I) hear myself well," always the recovery.

This is how the structure manifests itself in history, in trickle-down effects. We will
therefore discuss historical neurosis, whose prototype is phobia, anxiety neurosis, the hub
of all neuroses. The two major neuroses, hysterical and obsessive, can be deduced from this
structure thanks to the breakdown of the fantasy formula in a third calculation.
Respectively:

— on the side of object a,

the hysterical plot, which attempts to reveal the sexuation of the object of desire, responds
to the jouissance that has been forbidden;

— on the side of the subject $,

with the impossible death of the subject in the obsessive, who tries to prevent the subject
from fainting in response to the jouissance that has overwhelmed him.

But to leave it at that would be to forget that psychoanalysis is an exercise in reading, not a
search for a model. In order to enter the Freudian field, there is the opposite pole to that of
neurosis, that of perversion, whose role is clarified by Lacan with the sinthome, as we have
already mentioned above.

Clinical psychoanalysis

We note that entanglement, characteristic of non-knots, occupies all positions in the
latticework of an asylum clinic.

The question now arises as to the existence of knot theories independent of non-knots. This
would be a clinic without entanglements, a clinic of psychoanalysis.
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We will go on to show which theories are necessary when entanglements are set aside by
the ethical envelope of analysis.

Second question raised by our presentation

To do this, we must first study, in the presence of the entanglement that causes unease in
civilization, the relationships between these various theories.

Passage from the extrinsic to the intrinsic and reciprocal passage along the edges of the
lattice of theories in the asylum with which we are therefore not finished. We must continue
what has been undertaken here, isolating the non-knots among the knots.



This study, which should enable us to detach ourselves from the asylum, goes so far as to
situate the function of the nodes of Lacan's node family and the clover node among the
proper nodes. This is done by means of a relationship, called homology, which will be
defined to conclude this chapter and this book, and consequently by taking into account the
heterology of the knot.

This relationship will lead us to compare proper (homotopy) and improper Gordian
movements with each other in the rest of this series.

This provides an opportunity to return to the notion of crossover in specific cases. This is
where the main difficulty lies in presenting a clinical case in psychoanalysis, as opposed to
commenting on a figure or style in literary criticism.

Let us now clarify the second point that we emphasized at the beginning of this
presentation of Freudian structures. We will now explain what is at stake in this clinic and
in this topology that makes them resonate together.

Clinical dimension

0 — We have already established the structure of the semblance, that of the imaginary
function of the phallus. It presents a difficulty, known as alienation, for the subject. Indeed,
if the subject adopts the male option, then there is no logical necessity (impossible) for it to
be otherwise; only what he represses thus returns in his symptoms. Whereas, if they opt for
the female version, by not repressing castration, they will undergo it, because having
chosen it allows for its disappearance as logically probable (possible) and the necessary
return to the male position.

It is true that it is contingent that there are women worthy of the name. It seems that there
were some in Venice...

0.1 — The symptom realizes a figure of speech.

0.2 — It is not that the subject becomes aware of the repressed elements, nor of their
meaning, that removes the repression. There may be an intellectual lifting (Aufhebung) of
the repression through classical negation, but not an affective acceptance (4dnnahme) of the
repressed.

Thus, we are led to insist on the characteristic feature of our analysis of denial, on what
remains unnoticed in the students of Freud and Lacan.

There is an ambiguity regarding the function of the sign of negation as a marker in our
reading of Freud's text.

Conversely, however, it is always a question of the subject holding together, in the same
syntactic construction, the two terms of a more (foreclosure) or less (repression) exclusive
contradiction. Otherwise...



"A repressed content of representation or thought can therefore make its way
(durchdringen) into consciousness, provided that it allows itself to be denied. Negation is a
way of becoming aware of the repressed; strictly speaking, it is already a lifting
(Aufhebung) of repression, but certainly not an acceptance (Annahme) of the repressed."

There is the function of negation, which appears as a marker, and this difference between
lifting and accepting the repressed. We will discuss the use of different negations, but this
must be demonstrated logically. Freud clarifies the issue.

"We can see how the intellectual function dissociates itself from the affective process. With
the help of negation, only one of the consequences of the process of repression is reversed,
namely that its representational content does not extend to consciousness. The result is a
kind of intellectual acceptance (Annahme) of the repressed, while the essential remains
subject to repression."

This difference between lifting and acceptance becomes here the distinction between
intellectual function and affective process.

0.2.1 — We return to these distinctions between lifting repression and accepting the
repressed, intellectual function and affective process, because it is precisely the rhetorical
aspect of the symptom, its stylistic and non-classical aspect, in the logical sense, that leads
us to conclude that the affective process and the intellectual function are dissociated.

Far from words expressing ideas, sentences manifesting thoughts, and figures revealing
feelings or passions or even affections, it is rather these categories of language that produce
their effects even in narcissism and lead us to believe in the parallel existence of these
entities of the mind.

However, we already have enough to do with deciphering the truthful fictions produced by
the effective rhetorical use of language without having to invent additional ghosts. On the
contrary, it is the impact of speech in its effectiveness that suggests these psychological
additions hanging on the walls of an unlikely place, like family portraits in a gloomy
mansion. The illusion of the self (onto) must find its logic, refusing to recognize itself in
words (risk of delirious interpretation), sentences, and especially figures; it places itself on
the other side, in what it believes itself to be, its ideas, thoughts, and passions.

1 — Thus, more than the subject's interest in his own style, the transfer reveals his passion
for the principle (Oedipus) that a figure must satisfy in order to pass as rhetorical. This
attractive and repulsive passion leads the subject to believe in the natural, even
supernatural, dimension of his attachment to his privileged and misunderstood figures.
Unrecognized, that is to say, more or less confusedly known and recognized.

We must therefore return to what a style, a figure, a literary device is.



The clinical issue lies in the importance of the logical structure of these figures, which are
unsuspected by the subject himself.

But the question bounces back from the difference between meaning and style to the
difference between rhetoric and logic.

Some consider these two disciplines and the constraints they study to be radically different,
even incompatible.

We must explain why this is not the case, since they do sympathize, but yes, they do
sympathize.

1.1 — This principle is a regression, specific to truth.

Principle

The difficulty in knowing, presented by truth, rhetoric, and speech, stems, for the scholarly
commentary on scientific subjectivity, from the absence of markers that attest to the

presence of truth, figures, or simply speech.

We can always attempt to introduce such markers in a scholarly manner, indicating, for
example, the presence of a metaphor in the verse by Victor Hugo proposed by Lacan:

"His sheaf was neither stingy nor hateful."

If we mark (linguistically) this figure with a metaphorical predicate such as:

"His spray" is a metaphor

this predicate must be capable of satisfying the (rhetorical) condition of structure T:
"his spray" is a metaphor for his spray.

The logical equivalence connector "<" reads "if and only if."

For what makes a figure of speech powerful is its ability to surprise us in a special way,
precisely because it lacks markers.

Thus, because of this condition, figures of speech are like opportunities to situate
subjectivity in language [41] when using personal pronouns, deixis, and performatives.

This principle specific to truth (Tarski), although crucial in logic, is not widely studied in
this discipline, where logicians prefer to examine the syntactic aspect of statements, which
is apparently closer to algebra.



What can be said about linguists who, thanks to this privilege of order, have been able to
introduce a little reason into their field but who, today, no longer dare to continue this
advance in the right direction?

Dependent on philosophy professors, both are forced to participate in the desperate rescue
of consciousness. This is a criminal pact of which our scholars are hostages. It results in a
lack of criticism of psychoanalysis relevant to its rationale.

This principle, linked to speech, which makes every utterance imperative, plays on each
figure to produce it as a figure, with the presence linked to the plasticity of the signifier and
the absence of a marker, which is replaced by the act of saying that imposes it in the first
place.

First means, before any criticism, the discourse of the master who always legislates even
where it is outdated.

1.2 — We have already studied truth and the marker of truth. Negation traditionally
appears as the marker of what is false.

1.2.1 — We thus find the function of negation, which is a marker function, already noted
by Freud.

What is false would be the same as what is repressed. Freud's id is this antinomy. But what
is repressed is untrue and irrefutable.

2 — The figure, like truth, conceals an inversion against a backdrop of dissolution.

This rupture of pretense causes a trickle of letters that erode the signified. Counting them
produces rapture, a return to the pretense that binds.

2.1 — The construction of this involution requires the immersion of an object in a higher-
dimensional space.

2.2 — Dimension is a topological invariant.

3 — All of these statements form a chain of reasons that situates the unavoidable aspect for
the analysand of this topological structure, which is usually invested in narcissism.

We will call this structure of signifying involution, a copula that unites the identical with
the different, the structure of semblance, denoted @, in the discourse of analysis, and which
dominates the functioning of -¢ in the body image.

3.1 — From this, two modes of satisfying a function are revealed, two jouissances linked to
the body.



This is the reason for this distinction, on the side of structure rather than trickle-down,
which Lacan takes up between the three-ring and four-ring Borromean chains.

Perversion, the sinthome

This brings us back to the link established by Lacan between perversion and the involution
of the knot between the four-ring chain and the three-ring chain. We will make four-ring
chains the subject of the next work!2in the series.

For the purposes of this work, we will focus on the effect of this involution among objects
constructed with one, two, or three circles. For this structure has a realization in the three.
This is the question of the generalized Borromean knot. We will develop this in the last
work!3 of the series.

The structure of perversion is the quaternary sinthome. We therefore propose to write this
figure of the father-version (reality) as a knot:

perversion  — chainceud Bo-généralisée

given the effectiveness of the chain of three, which remains this unthinkable function of the father.

How to read this algorithm, given that the structure of perversion is fetishism. To rigorously
articulate the sinthome as a tendency toward the father in the fetish requires establishing the
function of semblant, as we did with Hans and Tarski.

Our reading of perversion in Lacan's Ecrits is confirmed if we refer to his mathéme as he
proposes it [E a 29, p. 823]. It is indeed the fetish when areplacesi‘l in S(i‘l ). Thus, the
mathéme of perversion is written ® = $(a), not to be confused precisely with S(:‘l ).

On the other hand, there is a consistency in Lacan's work, a consistency that is confirmed
by the fixation of vocabulary in his later years. The fourth term takes its name from the
third mode of primary identification, in the often-repeated equation:

symptom = love for the father

A key question arises when reading Lacan's writings, if we look closely, concerning this
association of the paternal function with perversion, but the answer becomes clear.



If the structure of perversion is fetishism, fetishism is the establishment of semblance in the
sense of metaphor. It is the master structure of language because it relates to truth. Lacan
even makes it the discourse of the master, between the whole of the true that imposes itself
imperatively in the assertion and the not-all of a truthful word.

We have shown through Hans and Tarski why there must be a penis where there is nothing.

The Freudian structures of clinical practice, stretched between neurosis and perversion, are
implemented by Lacan from his seminar on the object relation [2 Sém [V].

This is indeed the opposition, absolute in structure, between phobia and fetishism. It is
modulated on the opposition between metaphor and metonymy.

The first question lies between metaphor and metonymy. Indeed, we associate the fetish
here with signifying condensation, whereas Lacan [E a 32, p. 877], when describing the
consequences of discovering the mother's lack of a penis, uses the opposite expression to
"reverting to a phobia," which is "restoring the fetish, albeit displaced."

Condensation or displacement, neurosis or perversion: like every pair of opposites in
Lacan, these oppositions are susceptible to involution. We always respond with signifying
involution instead of certainty, but this response is legitimate after we have established the
doctrine in mathematical logic.

Then, and only then, can we assume that Lacan, in his Ecrits and seminars, performs an
involution between metaphor and metonymy, the line without a point of which is found in
one of his Ecrits. This is in "Radiophonie," when he answers the third question asked of
him about linguistics. We thus open the way to a commentary on this answer according to
the reasoning that led to its formulation as we read it.

In the structure, it is a matter of the pulsation between Borromean rings:

Chainceud Chainceud
borroméenne généralisee borroméenne

Fig. 31



In the above, there is metaphor, which plays an effective role in determining the other
structures.

The improper metaphor

The metaphor of the father's name fulfills a particular function in psychoanalytic discourse.
Let us note this result as follows:

métaphore impropre — chainceud borroméenne

(5 (5

This function is that of the effectiveness of the chain of three. We mean the effective
function of the Borromean three insofar as it suffices, with any knot movement, to destroy
or construct any object that is not a non-knot.

Insofar as it is a matter of immersing the theory of non-knots in the theory of the knot.
From there, the analysis consists in diffracting this immersion into various theories,
characterizing n spaces, thanks to the specification of the different knot movements.

In the Borromean ring with four rings, the knot that holds the three rings in the chain of
three is explicit. The sinthome writes what is implicit in the three, and thus becomes that

toward which the four tends without ever reaching it: the sinthome, perversion.

Thus, we will also write:

pére — chainceud borroméenne

(5

Lacan explains his attempt by pointing out that Freud sticks to the four in Totem and Taboo
mainly, and he needs the myth of the Orangutan father where the structure shows another
reason for the murder with the transition from four to three.

The mathéme of metaphor undergoes variations in Lacan's Ecrits, of which we retain the
final formula:



If it turns out to be the master's discourse, it is indeed the imperative fact of the signifier
articulated by this formula. Again, the function of saying.

We will therefore write it from this node, having established its function in topology.

Chainceud borromeenne
Fig. 32

We will now calculate, within this topology of the node, the relationship between fantasy
and delirium in relation to metaphor. This calculation is based on cross-sections. The rigor
of this calculation rests on the homology relationship, the definition of which we will
establish in order to conclude.

The structure of fantasy

But first, the structure of fantasy. It is written as follows:

structure du fantasme — chaine de Whitehead

DO QB

Whitehead's chain is obtained from the Borromean chain by a cross-section. We can read
the function of the chains of this family in the lattice of theories.

The mathematical writing of the fantasy by the

formula: (§ ¢ a)



makes the connector ! support the relationship between its two terms, the subject and the
object. This relationship is found in the reversibility of the two rings of the chain in
question [2 Sém XX, Encore].

Chainceud de Whitehead Fig. 33

The folded loop can be unfolded provided that the other loop is folded in the same way as
the previous one. This is the reversibility of the loops; such a chain is said to be reversible.

This is not the case for all chains that we define as belonging to the Whitehead chain
family, if we characterize them as 2-chains derived from 3-braids with an even part and an
odd part (we are referring to the cut and non-cut parts of our graphical description
completed in Chapter VI).

We will study their relationship to Borromean knots using the homology defined below.
They are generalized knots, but considerably altered; however, there remains a trace of the
opposition between the parts, which is necessary for knots.

Let us now move on to the defect of metaphor with the continuation of the alteration until
the complete erasure of one of the parts of the chain knot in favor of the other, thus
producing pure knots or pure non-knots.

a2 - Psychic causality with alteration of the metaphor

There are two aspects to be distinguished in the study of psychoses. These two aspects are
additional, in other dimensions in the latticework of theories, to the pulsation of the
structure that characterizes analysis in the terms in which we now formulate this clinic.

It is about delirium and the absence of metaphor.

The delirium of paranoid psychosis

The proper knot of paranoid delirium leads us to write:



délire paranoiaque — noceud propre
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We discussed this in terms of a hole in the period of surfaces with the schema I constructed
by Lacan to illustrate his analysis of the Schreber case. Homology will allow us to clarify
this function of proper knots, presented here using the clover knot.

In psychosis, there is no signifier of a lack in the Other S (1‘1 ). The semblant is good for
others, obsolete, obsolete, Lacan says, foreclosed. The Other lacks nothing, hence the
identities taken as a whole:

S(AO=F=a
by default of the circulation of =¢.

We now clarify this by presenting paranoid psychosis as a freezing of the signifier with the
continuity of the three consistencies of the Borromean ring, the real, the symbolic, and the
imaginary. The term =@ thus translates the distinction between the three rings in their
homogeneity [2 Sém XXII, R.S.I.]. It is this homogeneity, which is neither identity nor
continuity in the chain, that causes difficulty for Lacan's students of the generation that
preceded us, as several have personally testified to me.

The clover knot is produced by connecting the loops of the chain knot using two cross
sections. It is a neat knot similar to the chain knot, as we will see below:

Fig. 34

Noeud trefle

Scientific subjectivity tends to make this outcome commonplace, with a somewhat rigid,
even completely blocked style.

Scientific subjectivity



We return to where we started at the beginning of this chapter with delusional subjectivity.
It is characterized by three features, a delusion, an alibi, and a belief, which place it in the
realm of social psychosis.

This absence of metaphor specific to delusion therefore extends beyond paranoid psychosis.

But it should be noted that mathematics, while it is a discourse without metaphor, is not for
that reason a place of absence of condensation in the Freudian sense, that is to say, a
rigidity of style. On the contrary, the mathematics of mathematicians, not that of
apparatchiks or technocrats, is pure condensation, reduced to the letter, of what language
deploys in metaphor. This means that there is a link between syntax and rhetoric.

But the social psychosis spread by scientific practice requires resolution in analysis through
rigorous answers to the questions now posed in these terms. It is therefore necessary to
respond with the mathéme.

In the mathematical writing of non-rapport converges the only place where psychoanalysis
borders on competing with science.

a3 - Psychic causality and condensation

With these clarifications made, we can return to a crucial point at the time of the
completion of psychoanalysis. After Lacan, one task remains to be accomplished.

Another question arises, which has been left unanswered, concerning perversion. When the
reader wonders about the fetish in sadism, which is usually considered a perversion. Freud
considers it as such.

In sadism, it is the pervert himself who becomes the fetish. Lacan clarifies this in his essay
entitled Kant with Sade.

But we must consider more than just the privileged instrument of perversion. This
instrument has a function. It is a matter of making it satisfy the structure of the fantasy.
Thus, the sadistic pervert attempts, with this object, to reach the subject of the torments he
inflicts. This subject is the other for him, who is reduced to the function of agent. He tries
to reach him in his subjectivity, that is, his split. If the subject faints, the scene breaks
down.

But here there is a risk of great confusion, which Lacan's students who preceded us were
unable to avoid.

The object of psychoanalysis

We will write the object a, from a final algorithmic formula:



psychanalyse — non-nceud propre
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This object is the argument of a detachment function characteristic of the position of the
desiring subject.

Thus, we must not confuse, as most aspirants to the function of psychoanalyst do, the
pervert with the desiring subject. The desiring subject does not shy away from the glimpse
of lack in the Other, even on occasions when it is reduced to what is perceived of it, which
Lacan formulates in writing:

a

-0
where the =@ of castration runoff... slips under the object a.

The desiring subject, whose example Lacan points to in the character of Alcibiades at the
end of Plato's Symposium, illustrates the springboard and outcome of transference.

The desiring subject is in a position radically opposed to that of the pervert, since he
submits himself to the test of the structure instead of trying to subject others to it by making
them experience this lack. He aims to enjoy witnessing this test in the other, instead of
submitting himself to the test of the failure of lack in the Other. Our perverse sinthome is
very close to madness here.

This writing also shows the opposition to the neurotic, for whom this term =¢ is inscribed,
as we have already specified, under the matheme of the subject:

$
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But at the same time, this writing promotes the risk of confusion that we denounce here
among Lacan's readers between the perverse and the desiring. Since neurosis and
perversion are opposed as opposites, as we have said, as metaphor and metonymy also in a
rotating structure. This opposition between neurosis and desire can be confusing, and it has
not



. See the reminders from certain little Lacanians to their colleagues, always the others, not
to slip into perversion by becoming heroes of desire. In fact, it is always a question of
control and conformity, by perverts themselves.

It is therefore a common mistake to confuse perverse with desiring, which very few have
refrained from doing when it comes to themselves in their attempt to regulate the Freudian
field after Lacan. These are the risks of imitation in this field; there are acts that cannot be
mimicked.

We return to analysis to conclude, to its end. It is characterized by the recognition of a
radical lack that the subject can confront:

s(A)

whereA is not replaced by a as in the mathéme of perversion and the recognition of the
structure of fantasy:

($ 0 a)

where a is not replaced by D as in the formula of the drive, producing a substitution
characteristic of neurosis.

This restoration of letters to their proper place applies to the recognition of the object.
Finally constructed as an agent, we write this object a, after involution, thanks to a non-knot
that owes nothing to entanglement. This is Lacan's knot [2 Sém XXII].

MNceud de Lacan Fig. 35

But let us not believe that we are already done with the torus of neurotic madness, that is,
with entanglement. It still acts in this context in a subtle way and puts the subject at risk of
returning to it at any moment.

Our task now will be to locate it in the right place.
To this end, we want to return to the difference between Lacan's and Soury's approaches as

a first study. That is, to the comparison of proper (homotopy) and improper Gordian
movements.
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P. Soury, in dealing with homotopy chains tpn, placed himself in a strictly Freudian
perspective, It is necessary to undertake the study of T, theory at the same time, because an
involution takes place between these two theories due to the generalized Borromean
movement, i.e., the hybrid knot movement.

Based on our points of contact between knot theories and analytical discourse, we can see
that this is the privileged locus for the study of neuroses and perversions from which Freud
set out to invent psychoanalysis.

Lacan practiced Tin theory, albeit improperly, in solitude, since it was not enough for him to

say so for anyone at the time to realize it. For the same reasons, we must turn, on this side,
to 1i theory, which is in involution with the former through an interposed hybrid movement.

This is the structural locus of predilection for delirium and madness, between paranoia and
delusional subjectivity, shall we say.



Thus, as participants in discourse—Lacan in analytical discourse, Soury in scientific
subjectivity—each deals more specifically with discourse that is supplementary to that to
which he or she belongs, that to which the other belongs.

Third question raised by our presentation

If we follow the latticework of theories we have arrived at, we can reveal the chiasm that
was difficult at the time and that must be taken into account between proper Gordian
(homotopy) and improper Gordian.

This chiasm has a reason in the form of generalized Borromean movement, once again
hybrid movement. We can thus establish, some fifteen years later, what our contribution to
this debate was. It will be obvious to anyone that we did not understand at the time what
was going on there, but that with robust categories such as those produced by Lacan, we
can wander through this field in a relevant way. Without the risks of false prudence that the
so-called serious people of realpolitik impose on others.

Structural analysis requires time to be illuminated, as does political analysis or historical
analysis.

4. Heterology of the knot

This chiasm concentrates what is heterogeneous about the knot in relation to the homology
we now want to establish between the theories.

We return to the aesthetics of this letter, after passing through the difficult stage where we
had to reverse something in the study of these theories.

We therefore obtain the following diagram for the study of homology.
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We are now ready to study the homology announced in its place, between these two
theories i and Tp.

al - Homology (general reminder)

In order to define a final equivalence relation between the objects of our knot theories, a
relation that will produce an equivalence indifferent to the number of linked or knotted
circles, let us recall a notion already presented* in our previous work. This is the

homology of paths in topological surfaces.

Consider two oriented paths on the surface of a simple torus:



Beyond the intuitive reason we may have for thinking that these two paths, in our example
chosen for this purpose, resemble each other in some way, given the surface of the torus in
which they are immersed, we want to define this resemblance. This amounts to specifying
how they resemble each other to the point of being identifiable in an equivalence class. This
requires that the relationship between them be one of equivalence. We will see this later.

Fig. 36

Let us call a and b our two directed paths given as examples and now consider the case of
the two paths a and — b:

where the minus sign indicates a change in direction of the path, shown by an arrow in the
drawing.

Fig. 37

These two objects, a and — b, must be combined:

W

according to a method of composition reminiscent of our cross sections, that we will define
the relationship between them.

Fig. 38



We cut them both to join them together with a strip whose edge goes back and forth. This is
a portion of an adjustable surface, so as to create a new path named (a — b). This
composition is carried out, in cases where the respective orientations of the two paths allow
it, and taking into account the surface on which we are constructing this compound.

If, then, these conditions are already met, the composite path is the edge of a disk, a portion
of a sphere that can be taken from the surface where we are located, which is the case here:

Fig. 39
We will say that (a — b) = d and that the two paths a and b are homologous.
Definition

Two oriented paths are homologous in a topological surface if the composite of one with
the inverse of the other forms an edge (of a disk).

Note that if we consider disk edges as a class playing the role of neutral element for
composition, the relation constructed geometrically between oriented paths is written
between classes of paths (a*— b*) = 0 and produces a group structure between these classes.
Then the homology relation between two representatives of two homology classes is
written:

(a—b)=0,or(a—b)+b=b,ora=b

where the reader can grasp the need to introduce the inverse of one of the paths in the
definition.

Let us give another example of homology on the surface of a torus presented as a sphere
with a handle. The aim is to show that the composite of two paths is indeed homologous to

a single path.

Let us consider two oriented paths and their composition according to the process we have just described:



(&

Fig. 40

This composite is equivalent, through intuitive deformations, to the following path:

l- Fig. 41

To ensure that this intuitive equivalence is indeed contained in the notion of homology,
consider the composition of our two starting paths with the inverse of its supposed similar:

|\

Fig. 42

Indeed, the combination of the three is indeed the edge of a disk:



Fig.
43

Let us return to this intuitive notion in our nodal considerations, in order to clarify the
definition of a new equivalence relation which, like path homology, will disregard the
number of chain components and allow us to compare proper knots and chain knots.

a2 - Trivialization by symmetry

It happens, but this quality is not necessary, that a chain sr of r rounds is such that, when
composed with the chain that is symmetrical to it sr ' = sym (sr) (in an axis symmetry):

Sr Sr =1 Fig. 44

Using ribbons that match the colors of the empan surfaces in the two presentations given,
we note # the composition:



r-1
S #:8 Fig. 45

The whole s trivialized into disjointed, unlinked circles, which we denote er. We draw your
attention to the fact that we have indicated the cut in this configuration to remind you that
the assembly is consistent in terms of coloring, but it is not an additional edge circle that
insists. It is an edge that consists!?.
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Fig. 46
This means that we can write about this construction: [(sr) #r (sr ')
= o]
The number of ribbons and the number of circles
When this trivialization does not occur, we can add r' ribbons such that we obtain:
[(s) #ree (S ) = ervr]

This gives us a first indication of the regular assembly from which a given object
originates.

The additional ribbons will be an indication to look for an r+r'-chain that maintains the type
of homology relationship we want to study here with the given chain.

But this indication is insufficient, because there may be a higher-numbered solution, even
when r' = 0. There may be other solutions with ' > 0, with changes in the presentation of

the chains involved.

a3 - Cross sections



Defining, according to a process analogous to the homology of paths in a surface, from this
trivialization, a first relation between the nodes and the chains, and between the chains
themselves, requires some clarification.

Definition of a system of cross sections
We denote by ¢q @ system of q cross sections that respect a coloring of the span surface of a

chain or knot presentation. These sections are made between the circles that constitute
edges that lie on the span surface.

un systeme cq dans S

Fig. 47

We propose that these sections follow the boundaries of the span surface, not the edges that
consist of it, i.e., without torsion, even if not apparent!®,

Definition of a regular system of cross sections
A system of q cross sections is regular for a given r-chain with 0 £ q < r, when for any
order on ¢ it passes from the r-chain to an (r — 1)-chain, to an (r — 2)-chain... up to an (r — q)-

chain.

To meet this requirement, each cross section is performed between distinct pairs of rounds
in the chain.

a4 - Sections that do not hinder trivialization

Let us then define a relation between chains and nodes that uses ribbon montages,
trivialization, and these section systems.

Definition of the order relation of degree m: denoted <m



We will say that two nodes or chains sn and sm, with n £ m, defined up to Reidemeister
moves, are linked by a relation of type <m, or that (sn <m sm), if and only if:

Sn= Sm t C(m-n)
and, if [(Sm) #m (S{l) = em], then [(Sn) #m (S 7191: en].

The section system ¢m-n) does not interfere with the trivialization defined by the assembly
[(Sm) #m (S 71111) = em].

a5 - Number of rounds in the maximum chain

Even in cases where it suffices to take the number of ribbons equal to the number of circles
for a chain to trivialize with its opposite, which we write as follows with the relation <r:

(Sr) <r (Sr) A d [(Sr) #Hr (Sr_l) = er]

We may wonder about the maximum number of circles, if it exists, and the number of
ribbons required that we will retain in the theory after discussing the case, i.e., such that
(Sr) <max (Smax)

This gives us a second indication of the regular assembly from which a given object
originates.

For a knot or chain of r loops, the number p of parts (knotted and unknotted) can serve as a
second indication, given the description of chains and knots that we have already proposed

in Chapter VI of this book.

Under these conditions, if smax is a string sm with m characters, then this number is such
that:

pt1< m
a6 - Partial strings of a given string

In order to formulate the heterogeneous presence of the node in non-nodes from three
circles, we can consider, in a chain, its partial chains or partial chains.

A partial chain is characterized by a quotient of the set of colorings of a given chain.

When we consider the most discrete partition of this coloring set, each coloring corresponds
to what we will call partial nodes of the given chain.



This means that in the case of knotting the chain as a whole for each fixed orientation, i.e.,
the chain itself, but whose orientations of the rings are made integral by this very fixation,
we will refer to the partial knots of the given chain.

It is these partial objects that account for the presence of knots in non-knots. Non-knots also
have partial knots that are homologous to trivial knots.

It is clear that the choice of presentation and orientation of the object plays a role in
establishing this homology relationship.

a7 - Definition of the homology relation and homologous knots

Let us define the type of homology relationship we are using here in order to isolate the knot.
Definition of the usn relationship

We will say that two knots or chains S and S', defined by movements in theory T, are
homologous in T or linked in T by an nsn-type relation, or that (S usa S'), if and only if there
exists an n-chain sn such that:

S <nsnand S' <nsn

that is, there exist ¢p and cq such that:

S=sntcpand S'=sn+ ¢q

and if [(sn) <n (SYm (sn))™! = en]

then:

[(S)osm (sym (sn))™" = ew-p)] and [(S*)o<a (sym (sn))™" = e@-p)]

a8 - Properties we want to study next

Invariance of the number of nodes

It is very clear and simple to understand that if these cuts preserve the number of nodes, we
are satisfied.

Homologous movements
It also happens that between theories Ti and 1p, the homotopies that trivialize an object of

theory T into its contained non-knot are homologous to the Gordian knots that trivialize a
chain of theory Tp, homologous to this object, also into its contained non-knot.
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We can then consider that, in a certain way, to be specified below, homotopies are halves of
Gordian knots.

We can conclude this work on these perspectives with a first outline of results that reveal
the role of the knots of the Lacan knot family in this theory of homology, in contrast to the
generalized Borromean knot, which plays a role closer to heterology.

a9 - Series of homologous chains and knots

Finally, we give the main series of pure trefoil knots and Lacan knots (proper knots) which
are homologous to Whitehead knots in Ti theory (2-chain knots) and Borromean knots (3-
chain knots), homologous to the same Whitehead knots in T, theory.

Homologous objects correspond term by term according to their position, from one drawing
board to another.
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Appendix

Elements for a theory of representation and the object

Chapter 1
Coloring and Orientations

The act of spreading color to paint areas is not a trivial gesture, as it might seem to a hasty
mind. If we compare this coloring to what a semblance of calculation requires, such as
orienting cycles, we are surprised by the exact translation that insists between the results of
these seemingly very different activities.

The difference between them lies in their size: two for the colored flat area, one for the oriented paths.

We are tempted to believe that the extended surface lends itself more to representation and
resemblance, which are characteristic of analogy, while the line drawn in writing and
meaning are more suited to metaphor. However, here we will show that they intersect in a
strict translation.

1. Coloring

We will not dwell on this further here, since coloring is the main focus of our initial
investigation of the knot. Let us simply emphasize that the effect of the color spread across
the areas is that, after establishing the distinction between full and empty spaces, it marks
the string elements on one side with a color. There are therefore two primary differential

pairs in this process: dark/light and right/left.

For a single string element in this case:

This gives four colored cases:



sombre a gauche, clair a droite

clair a2 gauche, et sombre a droite

We want to compare this quartet to the pair of orientations of the string element.

2. Orientation

As we pointed out at the beginning, a string element taken from a cycle is capable of two

orientations, in this case up or down.

| Tl

3. The translation
It is based on a proposed equivalence between the previous indicators, which are composed

in accordance with this relationship:

T"Efld&;f
lallzl )

It

def det

For coloring, the dark/light change or the right/left change is equivalent, according to this
translation principle, to a change in orientation from top to bottom. A double change

returns to the initial situation.



We can establish this correspondence using two basic cycles, which are condensed into two
small drawings:

4. Accumulation

We can see that this method is consistent with a series of concentric circles alternately
oriented in one or the other of the two directions:

And that this approach is also consistent with the cross sections that we are likely to
produce between these oriented circles:

These cross sections respect the composition between them of the orientations of the cycles.

We can even generalize this practice of coloring and orientation to concentric circles with
different orientations. But then we must add a third element to the coloring in the form of a
cut that forms a border between the colors. We call this type of cut cycle a border.



The cross sections cannot cross this edge, because they would then no longer respect the
cycle orientations. But this edge itself is susceptible to orientation.

These colorings and this cut remain consistent with the cross sections if we add twisted
sections between the circles. This means that we can consider the initial cycles as Seifert
circles.

We can also take into account only one coloring of every other zone by introducing the
notion of solid and empty zones.

We remain astonished by the consistency of this set of facts, knowing that with well-
defined coloring principles, we can dispense with cycle orientations, which remain
uniquely determined based on the choice of given base cycles.

We can conclude that well-defined colorings or orientations are at play. The processes are
identical. This identity plays a role in our node coloring algorithm, which obviously comes
from the theory of surfaces conceived as piecewise-oriented tilings!.



Chapter 11

The object petit a in Chinese

Formalization

We propose to use the following expression where xoenz2 and y enza: £ (x, y)
=x+y+D)1+x(y+DA+x+1)yp

1. The elements

Any configuration can be broken down by a graph (called a Terrasson graph) into two
types of pieces, and only two types, which we will call generating punches.

We designate the two generating punches by the values:

a=1(0,0)=1 a=t{1,0=~n

and formulate the two modes of composition in the case of more general punches.
al - General form of the punch

A punch has the following general form:

P(x,m,n)=B (x).V (m,n)

where V (m, n) =A™ p" denotes the number of circles formed inside the punch with m
€0N and n €0N, and:

Bx)=1(x,0)=[(x+1)+xA]  forms its edge. a2
- Generating punches

The generating punches are therefore:



P (0,0,0)=1(0,0).V (0,0)=f(0,0)=1

and

P(1,0,0)=1(1,0).V (0,0)=f(1,0)=A

2. The compositions

The laws of composition of the punches can therefore be
written as follows. al - Composition by solids

For the composition by the full

P(x, m, n) A P(x', m', n') = B(x") . V(m", n")

where Bx"=F(xVx,0)
and V(m",n")=FxAx,0).V(n,m).V(n',m)
That is:

composition selon un point de plein

a2 - Composition by empty sets

For the composition by the

P(x, m,n) V P(x', m', n') = B(x") . V(m", n"
where B(x")=F(x A X, 0)
and V", n")=F (x Vx, ).V (mn). V(' n)

That is:



composition selon un point de vide

a3 - The closer
Finally, the closer introduces a multiplier factor:

F[P]=AO.P

Le fermeur F

3. Examples
al - Two punches (a’)

The composition of two punches (a’) adds a solid circle:

We compose two punches P (I. 0, 0) knowing that

P(1,0,0)=1(1,0).V (0,0)=f(1,0)=A.



p1(x",m", n") =P (1,0,0) AP (1,0,0) =B (x"). V (m", n"

where Bx")=f(1V1,0)=f(,0)=\
and V(m",n")y=f(1 A1,0).V(0,0).V(0,0)=f(l,0)=A
thus: P1=P(1,1,0)=f(1,0).f(1,0)=A

and becomes, if we add a closer:

Fp]=A0. A2 =M\

We leave it to the reader to verify that p; with a closure does indeed have three circles
surrounding solid areas.

a2 - Two punches (a)

On the other hand, the composition of the empty spaces of two punches (a) adds a circle of empty space:

We compose two punches P (0. 0, 0) knowing that

P(0, 0, 0) = (0, 0). V(0, 0) = (0, 0) =1
p2(x", m", n") =P (0, 0, 0) ADP (0, 0, 0) =B (x") . V (m", n"

where Bx"M=f0OVO0,0=£(0,0)=1
and V(m",n")y=f(0A0,1).V(0,0).V(0,0)=f(0,1)=p
thus: r2=P(0,0,1)=1(0,0).£(0, 1)=p

This becomes if we add a closer:

F[P2]=A0.p=Ap

Here again, we leave it to the reader to verify that p, with a closure does indeed have two
circles, one surrounding a solid area and the other surrounding an empty area.

Reading principle



The principle to adopt when reading the result in the figure is as follows: We read A and p
for each circle depending on whether it encloses a solid or a void.

The action of the closer can be described by the formula:
F[P (x, m—1,n)] =A0. P (x, m—1, n) = A™ p"

which states that the closer always completes a circle enclosing a solid shape in the
punch.

a3 - The little object a in Chinese culture

F[P(1,0,0) A (P (0,0,0)V P (0,0,0)) ]
AP (1,0,0) AP (0,0, 1]

AP (1,0, D]

AA.pl=Ap

a4 - The proposed exercise

We can formalize the solution to the proposed exercise:



We can describe this solution linearly, even though it is drawn in two dimensions on the
plane.

F[P(1,0,0) A (P (0,0,0) Vv P(0,0,0) AP(1,0,0)

AP (0,0,0) VP (0,0,0) Vv (P(,0,0)AP(1,0,0) AP(1,0,0)

Vv P (0, 0, 0)

vO(P (1,0,0) A (P (0,0,0) VvV P(0,0,0)) AP(1,0,0)) V P(0,0,0))]

We mark the change of direction in the drawing with bold parentheses. We have chosen
to present the graph in a way that highlights this change of direction in the composition.
It is equivalent to swapping the composition signs A and V.

We perform the first groupings that are legible in the figure:

A[P(1,0,0) AP(0,0,1) AP(1,0,0)

AP (0,0,0)vVP(©0,0,00VP(1,20)
vP(@©,0,0)Vv®(,0,00 AP (@0,0,1) AP (1,0,0)) VP(0,0,0)) ]

This helps us find the breaks that correspond to the parentheses and changes in direction in
the drawing:



AP (1,0,0) AP (0,0,1) AP (1,0,0)
A (P (0,0,0) vV P(0,0,0)VP(,2,0)
VP (0,0,0)VP(,1,1)VP(0,0,0)]

Let's perform the most significant grouping on the right side of the figure and begin to
express the punches obtained in terms of edges and numbers of circles:

A[P(1,0,0) AP(0,0,1) AP(1,0,0) AP(0,3,4)]

AB(1).1AB@0). pAB(1).1AB(0).A p*]

We actually obtain the following punch, the expression of which can be seen in the figure:
AP (1,5,5)]

A[B(1).Np3]

It contains five circles of each kind, which, together with the closer, gives six circles
surrounding a full circle and five circles surrounding an empty circle:

X[)\S pS ] = Aé pS
We used the general form of the punch:
B (1) A™ pn
oB (0)OA ™ p»
which, at the end with the closer, is no longer distinguishable:

B (A" p*]=A[B (0)A™ p* J=A"" pn



Chapter 111
Polynomials

The simplest way to introduce knot and link polynomials into calculations is undoubtedly
through L. Kauffman's polynomial. We follow this mathematician in [18. d and c].

1. From Kauffman's polynomial to Jones' polynomial

This calculation requires a smoothing decomposition of the object, as in every case since
Conway, when it comes to skein calculus, in order to obtain one of these polynomials.

al - Smoothing

This involves decomposing each crossing of the object into two smoothings:

D Q¥

Each smoothing is provided with an index.

Fig. 1

Let's look at an example of such a decomposition, using the trefoil knot:

QD

Fig.2
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Each state O resulting from the decomposition of K has a product of the indices of
successive smoothings and a certain number of circles.

a2 - The bracket polynomial

Let us give the expression of the polynomial bracket constructed by Kauffman &lt; K &gt;
of a given object K:

<K>=0x0<K | o> dlloll
00 o

where &lt; K | c0&gt; denotes the product of the indices attached to 0, and ||o|| denotes the
number of circles of 0,0minus one, and let us set:

d=(-A* -A?)
This polynomial is therefore a linear combination of the letter d raised to the power of the

number of circles in each state, minus one—that is, this number is reduced by one—a
combination whose coefficients are the products of the indices of each state.



It should be noted that Kauffman's bracket polynomial is established in the case of an
object that is not oriented with respect to the circles. It is an invariant of chains and
unoriented knots up to regular isotopies. This means that it is sensitive to loops (B1).

From this polynomial, it is easy to obtain others that sometimes correspond to different
skein calculations, but this is not always the case.

a3 - His interlacing calculation

It is itself the product of an interlacing calculation that allows for the definition we have
given.

Based on the polynomial of the trivial knot:

&lt; KO &gt; =1

Smoothing can be rendered by the formula:

&lt; K® &gt; = A &lt; K® &gt; + A &lt; K® &gt;

This 1s what we call a skein calculus.

Let's move on to the polynomial corresponding to the ambient isotopy deduced from
Kauffman's bracket polynomial.

a4 - The regularized polynomial of the Kauffman polynomial

This polynomial is an invariant of oriented objects with respect to ambient isotopy. It does
not correspond to a skein calculation:

ik (A) = (-A3)VK &lt; K &gt; (A)

where v(K) is the twist—the sum of the characteristic of all crossings—of object K.
This is a necessary step to obtain the Jones polynomial. a5 - The

Jones polynomial

The Jones polynomial was obtained independently of the bracket polynomial, but it can be
obtained from the latter by a change of variable.



If we set: A=t

we obtain the Jones polynomial: vk (t) = Lk (t14)

This polynomial is the subject of an interlacing calculation, which we will give later.

Its merit is that it distinguishes between the two trefoil knots, for example. It provided the
opportunity to construct the Homfly polynomial, which is simply the Jones polynomial
with two variables, and which in turn demonstrated its value to readers of the Bulletin of
the American Mathematical Society. They themselves had not realized this until four
different teams of mathematicians produced the Homfly polynomial at the same time. We
mention this anecdote in the history of scientific publications today because of its indicative
value for the state of scientific communication. There is a real difficulty in reading, and
boasting is useless in hiding the inability to assume this domination of the letter, whose
subjects are puppets in industrial production.

2. The semi-oriented 2-variable polynomial (Kauffman polynomial)

We can relate the Jones polynomial to another polynomial related to oriented objects with
respect to circles. Not being directly obtained by a link calculation, it comes from a
polynomial susceptible to such a calculation.

al - The .k polynomial and its linking calculation

We graph it as: 1k (V, Q)

It is invariant to regular isotopy. Here are the elements needed to calculate it:

O

...,

O 0
L =vLL L =v L

a2 - The semi-oriented 2-variable polynomial rx (Kauffman polynomial)
This is the regular polynomial of the

polynomial tk: rk (V, ¢) = VY& 1k (v, Q)



where v(K) is still the twist of object K.
a3 - Correspondences

The Kauffman bracket polynomial is a special case of L, and the Jones polynomial is a
special case of F of the Kauffman polynomial.

&lt; K &gt;(A) =1k (-A%, A + A-1)
where: v =—-A3

(=A+A-1

and; v (t) = px (— 34 1A 4 gla )
with: v = —t3/4

=tV + 14

These changes of variables give the relationship encountered above in the change of
variable:

A =t-14
3. The Jones polynomial and its derivatives

We already have a way to calculate the Jones polynomial from the calculation of the
Kauffman bracket polynomial:

vk () = Lk (14
But it is susceptible to interlacing calculation.
al - Interlacing calculation for the Jones polynomial

Here are the formulas needed for this calculation:

VO=1

tV®t1 V@ (t”2t1/2)V®



Using these two equations, we can calculate this polynomial from the figure by
decomposing it through successive inversions and smoothings.

a2 - The 2-variable oriented polynomial (Homfly) and its interlacing calculation
This is the polynomial: pk (a, z)

obtained by calculating its decomposition using the formula:

O

aP —al P =zP

It corresponds to the following change of variable: a

=t,and z=t"? — 12

to the Jones polynomial:

vk(t) = pr(t, tV2- t172)

and by the simpler variable change: a = 1 to the
Alexander-Conway polynomial:

vk (z)=rk(1,2)

a3 - The Alexander-Conway polynomial and its link calculation
There is an interlacing calculation for the Alexander-Conway polynomial:
vk( 2)

which is easy to establish based on what we have just said:

VOD=1

2.0



Today, it only has a historical role to play, since it was this polynomial that started things
moving in this direction of research, the polynomial for Alexander and the calculation of
links for Conway.

4. Derivatives of the Homfly polynomial

The Homfly polynomial is invariant for ambient isotopies. al - Its

regularized polynomial 1 (a, z)

rk (a,2) =av® gk (a, 2)

This expression defines it, but it also has an interlacing calculation.

HO=1

@ 8.0,

—a H™™

U
H —al o

Where we see that it is invariant only for regular isotopies. It is sensitive to the presence or
absence of loops and corresponds to objects placed on the sphere that are subject to
deformations integral to this sphere M2 and T3, which differentiates them from ambient
isotopies that are not integral to any support.

a2 - The oriented rotational polynomial

This is the last polynomial we will consider here among the known polynomials. It is
obtained through a change of variable:

a=(aB)"” a'=(aB!)

Using a polynomial Hk ( a, z) obtained from the previous one by a slight modification

wk (a, a', z) = (a") K2 OH¥ (a, z)



where: Hx (a,z)=[(a-a")/z] uk( a, z)

and where rot(K) is the sum of the oriented cycles produced by Seifert's algorithm, defined
in the first chapter.

It corresponds to the oriented objects placed on the plane, i.e., the hollow sphere, and
subjected to the deformations associated with this plane M2 and T3.

This polynomial can also be calculated from the figure of the object by a declination in
inversions and smoothings of its crossings, i.e., the calculation of interlacing defined as
follows:

WO=pD wO =A

withp=(a-B")/Ozand A\ =(B - a')/Oz

R & 0

and the following distinctions:

g
H —aH "™
g Q
WV —awm R W/ N =al W
.
o] A
W - B! W W :BWH

The interest of this last polynomial lies in its very close proximity to the figure it connotes
and its sensitivity to what we have themed under the title of duality. The duality factor
corresponds to a displacement of the hole in the sphere. It suffices to refer to the two
families of areas determined by the first step of our algorithm. The displacement of the hole
in the sphere occurs from an area belonging to one of these families to an area of the other.
This is equivalent to the change from full to empty in duality, i.e., the change from empty
around the figure of one family of areas to empty around the figure of another.



We have agreed to consider areas of the same family as the one surrounding the object in
question to be empty.

5. The polynomials of our colorings

We multiply each polynomial by the factor pC(K) or a'C(K), which requires the presence
of the span surface, i.e., the distinction between solids and voids, because the number of
crossings C(K) is oriented by the torsion.

v (M, V, Q) = pOc® 1k (v, 0)

thus: gk (M, V, Q) =V &) Lag (Y, V, Q)

and: &lt; K &gt;*(A) = 1k (A, O-A3 , A+ A1)
vek() = pox (014 434 (14 4 q14)
Whereas: p+k (a', a, z)=a""®) pk (a, z)

thus: pk (a', a,z) =a V&) gk (@, a, 2)

and: vk (t) —pr(t4, t, 12 —12)

Now we will construct the modified oriented rotational polynomial, which is slightly
different from those in the previous series:

wk (M, V, a,a’,z) =

HCEK) YK (@%)rot®) 2 [(a—a!)/z] . uk(a’, a, 2)
6. Variable changes

We list the correspondences we have reported:

We can deduce that:

A=gl4 =g

v=_g 3 =_ (af)8

Two remarks

1. First, regarding the conversion from ( to z via t. In the actual calculations, this remark
applies:

12 412 (4 14N 2 (4-1/4\2
z=t t 7)==t



z=(t "+ (1) 1/45) (1) 40 (=) Q) ()(t) 1/44) (1) 140

2. Secondly, a simple calculation to keep in mind:

2= (ap)2
a'=(ap!
NE

a> =(af) a=(aa’)
a’? =(ap') B =(aa”'
) a=(aa’)

B=(aa")

We have introduced a new variable P that we couple with V. In the polynomials of the
colored cases, we find other correspondences through successive variable changes:

M =A
p:t-1/4
Therefore:0p = a4 =a’ = (af!)"2

In order to find, between P and v with two other variables x and y, the same type of
calculation as between a, a', @, and 3, we set:

p= 0y )2 2 =Gyt x= ()

V=xy)"? v =xy)y=@'v)

Now, considering the exponents assigned to these variables in the polynomial expressions:
v e(K)

V-

v(K)

where ¢(K) is the number of crossings oriented by torsion and v(K) is the twist, i.e., the
number of crossings oriented by the characteristic, we can follow the effect of this

calculation in the expression T defined by the product:

T[:}J c(K) AV -v(K)



n=(xy ) 12 ¢(K) (xy) 12 ¥K)

Tt=x 172 [e(K) - v(K)] y -172 [e(K) - v(K)]

However, according to our definitions corresponding to the figures:

[e(K) — v(K)] =2 kis

[e(K) + v(K)] =2 ks

therefore: Tt = xKiS | y K*iS

where we find the cut and non-cut parts of our flat diagrams. Or again: T =
(V)RS (! v) ki

Let's return to the polynomials where we will make use of these calculations.

7. Interlacing calculations for our polynomials

Among the polynomials that we introduce with our coloring pages, some of them have an
interlacing calculation. This means that they can be calculated on the figure or at least

based on it.

These are the following polynomials.

First L=k (Y, V, (), then &lt; K &gt;*(A) and v+ (t) which are derived from it. Next, P*K (a',
a, z) and its regularized form H*K (a', a, z), from which V*K (t) can also be deduced. On
the other hand, the modified oriented rotational W*K (u, V, a, a', z) requires its own

calculation.

The other newly defined polynomials do not require any calculation; they can be deduced

exclusively from these.

al - The polynomial \ ~« and its interlacing calculation
We will begin by giving: Lk (H, V,

0

Recall that we defined it as:

Lk (M v, ©) = pEe® L1k (v, Q)

It is calculated using the following formulas:



Q-1
u'lL*@ +pL*
*Q =x1*

]jz =x"! L*

Thus, we can calculate r+k (M, V, C) using the following expression: p+x
(M, v, O =Vv® e (W, v, Q)

and: &It; K &gt;*(A) =k (A, A3, A+ A1)

vk (1) cope (T4, —t34 114 + (14

a2 - The modified polynomial

bracket

&lt; K &gt;*(A) can be calculated using the following formulas:

a3 - The modified 2-variable oriented polynomial (Homfly) and its interlacing calculation

On the other hand, we can determine p+x (@', a, z) using the following calculation:



P@-1 P@-:
o @ -r Q- P
BP*®*B“P*®=3P*®

a4 - Its regularized and modified polynomial v+« (a, z)

We can also calculate u*k (a', a, z) using a similar process:

H@-=1 H*Q -

@ e @
e @ @ @
*‘: o H* R H*U=BH*.

H*; = o H*MR H*u - H*WD

a5 - Interlacing calculation for the modified Jones polynomial

And v+(t) is obtained by calculation according to the following data:



V@ -=1 vVO-1

t3f"4 V* ® . t—3f4 v*® — ( tlﬂ _ t—-—]ﬂ) V#@
t5f"4 V* ® _ t—ﬁf‘i V* ® = tlﬁ _ t—lfz) V*@

a6 - The modified oriented rotational polynomial

And finally, the modified oriented rotational

polynomial: w (M, V, a, ', z) = g [ vvE&  wy

(aW‘Z.=p W.=l

where: p=(a—-B!)/Oz,and A= (B -a')/Oz

W@ v @ v

(-1, +1) (+1, =1)
I T
(+1, +1) (-1,-1)

and the following distinctions:



W*u — X_] (I_] W*.
W*u-_'“ B—lw*
= W*U:xﬂw*.

*
W ‘ — y—l 'U-_I W*-

W ‘ =3’B_1W*- W ; -y BpWH*
= P
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